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1 SUMMARY

The objective of this effort was to produce technologies that could reduce manpower requirements
and improve response times of future command and control (C2) systems through research in
machine learning. This in-house research effort explored various areas of machine learning to
produce technologies capable of supporting future C2 systems. Machine learning has the potential
to reduce manpower requirements, reduce decision cycle times, and improve the robustness of
C2 systems. However, many obstacles, such as intractability in large state spaces, prevent the
application of these technologies to practical C2 problems. The goal, then, was to research and
develop innovative technologies that overcome said obstacles and enable the application of machine
learning to relevant C2 problems. This goal was achieved through the research and development of
new state space abstraction and feature selection algorithms. Theoretical and empirical results of
this effort were published to refereed conferences and showcased in technology demonstrations. In
this document, we detail our approaches and report our results in improved scaling of reinforcement
learning through feature set reduction and the development of cutting edge state space abstraction
methods.

2 INTRODUCTION

Reinforcement learning (RL) is designed to learn optimal control policies from unsupervised in-
teractions with the environment. Many successful RL algorithms have been developed, however,
none of them can efficiently tackle problems with high-dimensional state spaces due to the “curse
of dimensionality,” and so their applicability to real-world scenarios is limited. In this report, we
detail our approaches to dealing with the high-dimensionality state space issues in five key areas:
Evolutionary Tile Coding, Continuous State Space Abstraction, Density-based Automatic State
Space Abstraction, Incremental Feature Selection and Sample Aware Feature Selection. These
approaches are based around the idea of reducing the actual state space that is learned by ab-
stracting the states in the space to a higher level, thus reducing the memory and search overhead,
as well as reducing the actual number of features that are being considered from the set of possible
perceptions available.

The remainder of this document is structured as follows. Section 3 will describe the algorithms
developed in each of the key five areas mentioned above, give background on the particular problem
the approach is addressing and discuss the other relevant work in that area. In Section 4 we will
provide experimental results pertaining to each of the five algorithms along with discussion about
the relevance of our results. Finally, in Section 5 we will provide concluding remarks.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

Reinforcement learning algorithms are often tasked with learning an optimal control policy in
environments with complex state spaces. Since it is infeasible to learn the optimal action to take for
every possible observation in most real-world environments with complex state spaces, techniques
that can simplify such spaces must be utilized for learning to be effective and efficient. The two
general techniques we have studied and applied in this effort are state space abstraction and feature
selection.

State space abstraction techniques generalize the space into very few abstract states. These
techniques must take care to avoid creating abstractions that prevents learning the optimal policy.
Many commonly used abstractions, such as CMAC [1], can take considerable effort to tune to ensure
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a learnable abstraction is created. Feature selection techniques are used to selectively discover or
determine a subset of the complete set of features sufficient to solve a given learning problem.
Ideally, the subset of features selected will be the minimal set necessary to represent the problem
so that optimal policies can be found.

In this section, we detail the state space abstraction and feature selection techniques developed.
The following section will show empirical results.

3.1 Evolutionary Tile Coding

Tile coding is a form of state abstraction for domains with continuous states spaces. It discretizes
the state space into tiles that cover ranges of values for each feature in the state space. Every state
that falls under a specific tile is treated as the same abstract state and the RL algorithm learns over
the abstract state space. The effectiveness of tile coding methods depends heavily on the design
of the tiling scheme. If there is insufficient resolution in a particular area of the state space the
RL algorithm will not be able to find 7*. As a result the design and implementation of tile coding
schemes has been a manual and time consuming process that requires significant domain expertise
to be effective.

Recently, there has been work in automated tiling methods that attempt to derive an effective
tiling scheme on-line [2, 3]. In this paper we introduce a new automated tile coding algorithm called
Evolutionary Tile Coding (EvoTC). EvoTC uses a genetic algorithm to derive efficient tile structures
that maximizes an RL algorithm’s ability to find a good policy. We compare the performance of
EvoTC to competing fixed and automated tile coding methods, CMAC and Adaptive Tile Coding.
And we show that EvoTC is able to provide more efficient tile based state abstractions that should
help enable RL algorithms to scale towards more complex problems.

The rest of this section proceeds as follows. First we provide background and details on the
two tile coding approaches we use for comparison. We then introduce and describe EvoTC in
detail. This is followed by a description of our experimental setup and results. We conclude with
a discussion of the results and a summary of the conclusions we were able to make.

3.1.1 Background

Cerebellar Model Articulation Controller The Cerebellar Model Articulation Controller
algorithm, better known as CMAC, was introduced in [4] (then called the Cerebellar Model Arith-
metic Computer) as a means of providing local generalization of the state space based on how the
human brain is thought to respond to stimuli [1]. This behavior allows states that are in proximity
to an observed state to learn even though those states have not been observed themselves. It was
chosen for our analysis because it is arguably the most popular of the tile coding methods [5].

CMAC partitions state spaces into a fixed set of non-overlapping tiles. Q-values that are learned
from any one state in a tile are learned for all states in the tile. Partitioning the state space into
many small tiles will slow learning but will improve the probability of finding optimal policies.
Conversely, if the tiles are very large then @Q-values will be distributed quickly across many states,
but there is no guarantee that two states on opposite sides of a tile should share the same action
values. In this case, each state may favor a different action, but only one action can be preferred
per tile, preventing a correct policy from being found. This tradeoff is mitigated by overlapping
layers of tiles to provide both coarse and fine grain generalization. Each observed state updates
one tile per layer, and each of these tiles covers a different portion of the state space. The preferred
action for a state is the action that maximizes the weighted sum of action values across all tiles
that contain that state.

Approved for Public Release; Distribution Unlimited.
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The CMAC algorithm has effectively learned a number of domains including the mountain
car and single pole balance [5]. More recently, it has been shown to suffer from some limitations
on slightly more complicated problems like the double pole balance [6]. The main difficulty in
applying CMAC is choosing a suitable way to break up the state space into tiles. If this is done
inexpertly then states that do not prefer the same action can be forced to learn together if they
are both confined to a single tile. This will severely slow down, if not prevent, the learning of a
successful policy. A secondary concern is the memory requirements for high dimensional scenarios.
The number of tiles per mapping scales exponentially in the number of input perceptions for a
problem, and storing all visited tiles can quickly become unreasonable. Hashing techniques like
those mentioned in [4] can be used to place limits on the memory requirements of CMAC, but they
effectively cause non-local generalization of learned values in the event of a hash collision, which
can negatively impact policy convergence.

Adaptive Tile Coding Adaptive tile coding (ATC) [3] is a tile coding algorithm that automat-
ically derives variable resolution state abstraction while learning a policy for a specific problem. It
is similar to the continuous U-Tree algorithm discussed in [2]. Both methods derive abstractions
by starting with a single tile that encompasses the entire state space. Based on observations made
while an RL algorithm attempts to learn over the abstract state space, “splits” are introduced.
Splits divide individual tiles evenly along feature dimensions into two new abstract states. The
idea is to increase the resolution only in areas of the state space where changes in action choices
should be made. Splitting continues until the RL algorithm is able to solve the problem using
the derived abstract state space. Determining when and where to split tiles is the only significant
difference between these methods. Heuristics is used for ATC [3] and a statistical method is used
for continuous U-tree [2].

ATC uses two heuristics to determine first when to split and then where to split. The first
heuristic keeps track of the lowest Bellman error per time step. If the lowest Bellman update fails
to change for a specified consecutive number of updates, split threshold, then the heuristic has
determined learning has stopped and it is appropriate to split a tile. Once it has been determined
that it is appropriate to split, the policy criterion heuristic determines where to split. The ATC
algorithm updates the @-values for all potential tiles in the tilings. Every time a potential tile
within the current activated tile prescribes a differing action from the activated tile it updates a
counter for the potential tile. ATC splits the tile with the potential tile that has the highest counter
value to establish that potential tile in the tiling. This process increases the resolution of the tiling
in areas where changes in policy are likely.

In [3] it was shown the ATC has a number of advantages over CMAC. First, the tilings are
derived automatically, eliminating the need to manually design and discover an effective tiling.
Second, ATC was found to be faster at finding 7* than CMAC using the best found parameters for
the number of tiles and tilings. The reason for the improvement is that the RL algorithm benefits
from the generalization of the overly abstract state space early in the learning. As the abstract
state space becomes more specific the new states are already partially learned because they retain
the values learned from the more general state they were split from.

Although this approach is an improvement over fixed tile coding methods like CMAC, it suffers
from a significant drawback. This approach splits the tiles in half evenly. It is highly unlikely
that such a split will be positioned exactly where there is a decision point in which taking one
action should be preferred over another. ATC can make up for poor split selections by successively
splitting sub-tiles until the decision point is reached. However, many unnecessary states could be
introduced and it will slow the RL.
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3.1.2 Evolutionary Tile Coding

Evolutionary Tile Coding (EvoTC) is a new approach that takes flexible state space arrangement
even further. Like the other adaptive tile coding approaches it starts with a single tile that encom-
passes the entire state space and introduces splits to increase the detail of the abstraction. The
major differences are that EvoTC uses an evolutionary algorithm [7] to determine when and where
to place the splits, and the splits can divide tiles unevenly. By dividing tiles unevenly EvoTC
should be able to derive more efficient and effective tiling abstractions than other existing tile
coding approaches.

In ATC and continuous U-tree the splits are placed in the center of tiles because it is difficult
to determine exactly where the optimum split should be made. So, instead they home in on the
correct position by adding additional splits. The additional splits are unnecessary and slow learning.
EvoTC is able to find better split positions by framing the problem of finding the optimal position
and number of splits as an optimization problem where the performance of the RL algorithm is
optimized.

EvoTC starts with an initial population of tilings to be evaluated. Each tiling is evaluated
independently by pairing it with an RL algorithm that attempts to solve a problem using the tiling
as a state abstraction device. The performance of the RL algorithm is considered the fitness of the
tiling. Tilings that are more effective at abstracting the state space should enable the RL algorithm
to perform better. After all members of the population are evaluated the fittest tilings are kept for
successive generations. New tilings based on the fittest members of the previous generation are also
introduced into the population for the next generation. The new tilings are generated by applying
mutation operators, described later, to the current fittest members of the population. The new
population is then evaluated in the same manner the previous generation was. Over the course of
generations a tiling should be produced that will enable the RL algorithm to exceed a specified
performance threshold and the algorithm terminates.

In the following we provide details on how the tilings are represented in the evolutionary algo-
rithm and how the mutation operators function:

Genetic Representation of Tiles Each chromosome in EvoTC represents a single unique tiling.
The chromosomes hold a tile arrangement described as a binary decision tree. The genes that make
up the chromosome describe the nodes in the tree. Leaf nodes represent a current tile and hold the
(Q-values associated with the abstract state. Non-leaf nodes represent tile divisions and describe
along what feature the division is made and its position. See figure 1 for an illustration of how
the tiling is represented as a tree. The genetic representation is non-fixed to enable the tiling to
become more complex as needed. The process of how the chromosome is extended is described in
the divide mutation operator description.

Mutation Operators The key to the EvoTC is its mutation operators which make diverse tile
arrangements in the search for the optimal arrangement. These mutation operators are applied,
with a specified probability, to existing chromosomes in the population to make new chromosomes
at the end of each generation. Two mutation operators are used in this algorithm:

e The shift operator moves the position of tile splits. The purpose of this mutation operator is
to explore the ability of the existing tiling arrangement to properly abstract the state space.
As such this operator should be activated with a higher probability than the divide operator
which changes the structure of the tiling arrangement.

Approved for Public Release; Distribution Unlimited.
4



Tile Tree

0470 @ S2

S0 S1 S0 S1

S2

Velocity

0.755

X Position

Figure 1: This figure illustrates how EvoTC represents the tile discretizations of a state space as
a binary decision tree. Left: shows a sample discretization of the two dimensional state space of
the mountain car problem. Right: shows the corresponding decision tree which is used to find the
@-values associated with the individual tiles.

When this mutation operator is activated it selects a number of division nodes to be modified
at random. For each selected node, the position of the divide is shifted by a small amount
determined by a Gaussian random distribution up to within 1% of the edge of the tile. This
prevents a pair of adjacent tiles from effectively becoming one tile if one of the tiles holds 0%
of the state space. After the selected genes are altered, the tree is updated with the mutated
genes.

e The divide operator introduces new splits to the tiling to add granularity to the abstract state
space. It should have a relatively low probability of being activated to give the shift operator
sufficient time to explore more general tilings.

This operator functions by selecting a single leaf node at random to divide. The node is
divided by randomly selecting a dimension to divide along and the division is placed using
a random Gaussian distribution over the center of the tile. Once the divide is set, new leaf
nodes and genes are created and attached to the new divide node. Finally, the Q-values for
the new leaf nodes are initialized to a value that encourages exploration of the new tiles.

3.2 Continuous State Space Abstraction

Given a Markov Decision Problem (MDP) defined over a set of states S and actions .4, reinforcement
learning (RL) algorithms seek to learn an optimal policy 7* which selects the appropriate action
a € A for each state s € S to reach some specified goal state. Typical reinforcement algorithms
learn 7* by repeatedly experiencing states leading to the goal state a number of times. In domains
with a continuous set of states, the probability of repeatedly visiting any state approaches zero,
preventing the learner from converging to 7* . State space aggregation or abstraction techniques
must then be introduced to allow learning of an optimal policy by turning the continuous space &
into a discrete space S’.

State space abstraction techniques can be classified into five categories depending on the “coarse-
ness” of the abstraction and what components of 7+ in the original state space are to be preserved
in the abstraction [8]. In that work, Li et al. proved that the optimal policy learned on several
of the categories of abstractions (model-irrelevance, Q7 -irrelevance, and @Q*-irrelevance) resulted
in an optimal policy in the original space. However, the two abstraction categories that produce
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the sharpest reduction in the size of the state space are not guaranteed to learn a policy that
will converge to the optimal solution. This makes applying these powerful abstraction techniques
(a*-irrelevance and 7*-irrelevance) dangerous in general, as they might prevent the learner from
arriving at the optimal policy.

One of these classes of abstractions, the a*-irrelevance abstraction, which groups two base states
together if they share the same optimal action, is of particular interest. One of the most popular
types of abstraction techniques, tiling, falls into this category. Examples of common tile based
abstractions include CMAC [4], and U-tile distinction [9, 2]. While tile based methods have been
shown effective in a number of situations, there are serious drawbacks to using them effectively.
Engineering a tiling is typically done by hand, and it can be very difficult to find an appropriate
tiling for a given problem or to correctly set the parameters in methods that build a tiling during
the learning process. It has also been shown that tiling techniques cannot solve some standard
benchmark problems [6].

Here we propose and evaluate three automatic tiling methods that efficiently learn how to
abstract a space but still allow a learner to converge to the optimal policy. These abstractions are
applied to the one dimensional state space produced by RL-SANE algorithm [10] which allows us
to focus on the methods without dealing with the dimensionality of the original state space. Each
of these methods allows the abstract states that are used by the learner to be redrawn in an effort
to get the states that share the same optimal action to fall into the same tile, and improve the
speed of the learning. It should be noted that the neural network that is involved in the process is
also evolving over time and is able to learn optimal policies on difficult problems even when using
a fixed tiling, however, we seek to reduce the burden on the neural network in the learning process
by using a better tiling approach. It is thought that once good automatically-tiling routines are
identified in this learning process, they can be used to abstract higher dimensional state spaces,
cutting out the need for a dimensionality-reduction technique.

We show via empirical study on two well-known RL benchmark problems that each of the three
automatic tiling methods proposed here allow the learning algorithm to significantly improve its rate
of convergence when compared to the base RL-SANE algorithm using a fixed tiling. Additionally,
we show that the automatic methods we propose here result in very few abstract states (tiles) being
used in order to learn the test problems.

The rest of this section is organized as follows: First we describe related tile encoding methods
and give background on the RL-SANE algorithm. The three abstraction techniques are described
in depth in the Automatic Methods section. The methods are then applied to the two problems
given in the Experimental Setup section, and the results of this study are given in the Experimental
Results section. Finally, the section concludes with a summary of our contributions and possible
future directions.

3.2.1 Background and Related Work

Here we give some necessary background on various tile encoding methods that have appeared in
the literature, as our methods can be interpreted as tile encodings as well. We also provide details
on the RL-SANE algorithm, the platform we use to reduce the dimensionality of the given learning
problems and on which we examine our proposed methods.

Tile Encoding Many tile encoding methods exist in the literature, and several popular mecha-
nisms are variations on the Cerebellar Model Articulation Controller (CMAC) algorithm [4] which
generalizes the learning of one state to a set of nearby states and is based on how the human brain
is thought to respond to stimuli [1].
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In tile encoding methods, the state space can be thought of as being broken apart into a number
of tiles, and every time one state is observed, all the other states that belong to the same tile (or
tiles, in the common event of overlapping layers of tiles) also experience the learning rewards. The
size of the tiles controls the resolution of the abstraction, smaller tiles result in a finer resolution,
but cause more states to be learned before the RL can find n*. The location in the state space
where the boundaries occur in the tiling can have a great impact on the ability of an algorithm to
learn 7*. For example, if in order to solve a problem, action a; must be taken from state s; and as
must be taken from so, then if s; and sy fall on the same tile (same abstract state). The optimal
policy will be impossible to learn since only one action can be taken from the abstract state.

A fundamentally different approach to the tile encoding problem is taken in [9] with the U Tree
algorithm and later extensions to this work [2] to have it work in continuous domains. Here, the
coarseness of the abstraction is not fixed a priori by setting a tiling, but rather, the space is viewed
as a single tile and then repeatedly split in areas where it is determined a finer abstraction is needed.
The algorithm decides to spilt a tile in two when each of the subtiles shows a different distribution
of observations than the whole tile, indicating that more information about the problem can be
gained by splitting the tile. These approaches allow for automatic construction of a state space
abstraction; however, they still suffer from a fundamentally arbitrary splitting mechanism.

When the U Tree algorithm finds that more resolution can differentiate observations in one area
of the state space, the algorithm simply splits the tile in two at the center of the tile. Splitting
a tile into two halves will lead to problems when the section of the state space that needs more
resolution is towards the center of a tile, as many splits will need to take place before this area
achieves the necessary resolution. This causes the abstraction to include and subsequently to learn
many unnecessary tiles which hinders the power of the reduction. In contrast, the methods we
propose allow the split locations to be positioned according to the needs of the problem and not in
a pre-specified location, nor deduced by a human prior to applying a learning algorithm.

RL-SANE The RL-SANE algorithm is a powerful reinforcement learning and state abstraction
algorithm [10]. It combines a neuroevolution approach to constructing neural networks [11] with
a fixed tiling over a one dimensional abstract state space to allow a learner to efficiently learn
complex problems by learning the optimal action for each tile in this abstract space. An overview
of this process is given in Figure 2.

For any dimensionality of input space S the artificial neural network layer of RL-SANE takes the
input measured across m dimensions and reduces it to a single output value z € [0, 1] corresponding
to a single abstract state s’ € §’. This one dimensional output space can still represent infinitely
many states, so a tiling is applied to it. The fixed tiling simply splits S’ into a number of equal
sized tiles with no consideration given to the exact position of where each split occurs, meaning
that the same problem that occurs with the fixed tiling methods can occur here as well.

The difference between a true tile encoding technique and the RL-SANE algorithm is the fact
that if a given abstraction does not allow 7* to be found, the Artificial Neural Network (ANN) can
mutate via neuroevolution and cause a different distribution of outputs which may better suit the
tiling and allow learning to continue. The original RL-SANE algorithm included a user specified
parameter 3 to determine the number of tiles to lay over &’. Evidence displayed in [10] shows
that the algorithm’s overall convergence is not very sensitive to 8 and the rate of learning can be
significantly impacted by a poor selection.
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Figure 2: Overview of the RL-SANE algorithm transforming a ground state s, , in a sample two
dimensional state space S to the abstract state s, in the one dimensional abstract state space &'

3.2.2 Automatic Abstraction Methods

In this work we focus on three different types of automatic methods that are able to redraw the
abstraction boundaries of S’ online as the learner embedded in the RL-SANE algorithm is learn-
ing. Here we describe mutation, Maximum Density Separation, and Temporal Relative Extrema
methods for automatic state abstraction.

Mutation The mutation method of automatic state bound construction makes direct use of the
neuroevolution process that is at the heart of the RL-SANE algorithm, and is the closest method
to fixed tiling of the three methods we discuss in this section. As mentioned above, the basic
RL-SANE algorithm takes the number of abstract states to generalize to, 8, as a parameter. The
mutation method encodes 8 as another gene in the chromosome and allows it to be mutated during
the evolution of each neural network. This allows the evolutionary process to automatically explore
different state abstraction possibilities in an effort to find a new one that better groups similar states
together based on the output of the neural network.

In this work, we experimented with two variations of this idea. The first allows the number of
abstract states to increase or decrease by one per mutation, and the second allows the number of
states to change by a random amount up to a user defined threshold in a single mutation. Whenever
a mutation to the state bound occurs, the method redistributes the previously learned @)-values for
each action in each abstract state into the new abstract states in proportion to the overlap between
the old and new states. For example, if there are half as many new states as old ones, then each new
state gets initial @-values that are the averages from the two old states that the new one overlaps.
This enables the learner to reuse values that it had previously learned while allowing more refined
abstractions to come into existence and drive the learner to a better solution.

This method directly improves the situation of estimating the proper fixed number of states,
achieving our goal of automatic state abstraction; however, there are still some drawbacks that
need to be addressed. While the boundaries are redrawn according to the chance of a mutation
to the neural network, they are still arbitrarily placed over the space; that is, each state in the
abstraction cover the same portion of the space, and there is no intuition that implies that this
is a good strategy in general. We would rather have the smaller states be introduced where finer
resolution is needed, and broader states where a coarse abstraction would do.

Maximum Density Separation The Maximum Density Separation (MDS) approach takes a
different tack in determining the tiling to be used. Unlike the mutation method, MDS can place
the boundaries of a split anywhere in the state space and can add or remove as many abstract
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Algorithm 1 MDS (Maximum Density Separation)

required: number of bins for frequency distribution
output: new abstract state mapping
<embedded within a reinforcement learning algorithm>>
get next state s’ by following 7* from state s
if s’ |= fail state

s:=3s

increment frequency distribution (s)
else if s’ == fail state

locate relative extrema in frequency distribution
erase old partitions of &’
partition &’ in the center of two relative maximums
if a relative minimum occurred between them
end else if

states at a time as the algorithm determines necessary. Similar to that method, the previously
learned Q-values in each of the old tiles are blended together to form the initial Q-values of the new
tiles. This method intuitively views dense clusters of observations as belonging to a single state, and
abstracts the state space so that these dense clusters are located on separate tiles from one another.
The split between tiles occurs at the farthest point between two dense regions of observations. This
approach is principled by the idea that nearby states will prefer the same action, however the size
of each these groups may vary so we must use an adaptable partitioning solution.

An overview of the Maximum Density Separation method is given in Algorithm 1. For a single
run of the problem in a given RL algorithm, this method records the frequency of observations across
the state space until a failure or the goal state is reached. On a failure, the constructed frequency
distribution is searched for relative extrema, using a soft-thresholding approach to prevent small
fluctuations in the distribution from leading to many spurious extrema. Once the relative extrema
have been identified, a partition is placed in the space in the center of every two relative maximums,
as long as a relative minimum occurred between them. The splits between abstract states are made
in this fashion in accordance with the maximum margin principle [12], which seeks to minimize the
structural variance in a hypothesis. Positioning the splits as far as possible from the dense regions
of observations minimizes the risk that in the next run of the problem new observations belonging
to one dense region will spill into an adjacent state and mislead the learning there. We wish to
make splits as far from the dense regions of points as possible since the next set of observations
may move the peak slightly from where it was found in the previous generation, but the same
observations will still prefer the same action and should not fall into adjacent tiles as would be the
case if the partitions were placed nearer to the dense centers. This process is linear in the number
of bins used to measure the frequency distribution, and in practice had only a negligible impact
on the running time of each generation of the algorithm, and so is a feasible abstraction algorithm
in terms of time complexity. After the new state abstraction has been set, the @-values that were
learned on the earlier state abstraction are transferred to the new abstraction in the same manner
as described in the mutation method.

This method effectively overcomes two of the perceived limitations of the mutation method:
abstract state partitions can be placed anywhere in the space and the number of states in the
space does not directly depend on the previous number. The MDS method does introduce some
other limitations, however. It could be the case that an area of dense observations are not really
homogeneous in terms of preferred action, but are coincidentally grouped together by the ANN.
In this case, the abstract states might still become successful if the ANN adapts and separates
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these states into two different clusters in a later evolutionary stage. Another limitation of MDS is
that it has no notion of observations that led to the failure, and the series may easily be grouped
with other observations with similar values but should be separated and allowed to pursue other
actions as soon as possible. The MDS method makes no provision for this possibility and relies on
the ANN to separate out the other states in a later generation. The next method addresses these
shortcomings.

Temporal Relative Extrema As the name implies, the Temporal Relative Extrema (TRE)
method, summarized in Algorithm 2, creates an abstraction by incorporating the order in which
observations are generated and not just their values as in the MDS method. Like the MDS, TRE
is capable of partitioning S’ into as many abstract states as necessary, and can place partitions
between states anywhere in the space. During preliminary studies, we noticed that the observations
in & frequently followed a periodic function, much like a sine curve, if states were viewed in the
order they were observed. The TRE approach was created to encourage more exploration in the
learner and break away from the periodic repetition of known states to get the learner to visit new
and possibly more beneficial states.

Per the TRE method, all of the observations are recorded for a single run of the problem until
a failure is encountered. At this point, the algorithm iterates through each stored observation
and identifies relative maxima and minima as those places are associated with restarting the next
period of observations. Each relative extrema are compared to the rest and if they are within a
user defined threshold ¢t away from each other then they are considered to be the same extrema and
are merged together. For minima, the greatest (innermost) observation is stored after the merge,
and for maxima, the smallest (again innermost) observation is stored. The state space S’ is then
partitioned at each of the final extrema locations and becomes the new abstraction for the next
generation. The initial Q)-values of the new abstraction are taken from the previous abstraction in
the same manner as the mutation and MDS methods. The time complexity of the TRE method
is linear in the number of observations for each run of the problem, and since the observations
must be generated anyway, there is no noticeable effect on the overall running time of the learning
algorithm.

The heuristic of partitioning the state space based on where the learner begins to repeat ob-
servations for the same problem is quite distinct from the previous approaches mentioned here. In
effect, this groups the heavily repeated observations into the same abstract state while allowing for
the relative extrema to more easily find their own preferred actions, which can lead to an improved
learning rate. If the extrema prefer the same action as the other heavily repeated observations
then there is not much harm done by separating them, as their initial @-values will be shared
according to the previous abstraction anyway and should not hurt the overall learning rate. The
similarity parameter ¢t does not need to be significantly tuned; it suffices to set it small compared
to the range of possible values for an observation. If ¢ is very small (s.t. |z — z;| > ¢t for nearly
all observations z;, z; € S’ near relative extrema, with ¢ # j), many abstract states will be created
near the extrema, but this has little real impact on the learning since they will generally share the
same -values over successive generations.

3.3 Density-based Automatic State Space Abstraction

There are many ways to achieve state space abstractions. In[8], the authors constructed a five tier
categorization scheme for them depending on the “coarseness” of the abstraction and what parts of
the optimal policy 7* get carried over from the original space to the abstract one. For three levels
of coarseness (model-irrelevance, Q™-irrelevance, and Q*-irrelevance) they prove that an optimal
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Algorithm 2 TRE (Temporal Relative Extrema)

required: similarity threshold ¢ for comparing extrema
output: new abstract state mapping
<embedded within a reinforcement learning algorithm>>
get next state s’ by following 7* from state s
if s’ |= fail state
s:=3s
record s
else if s’ == fail state
for each relative extrema
merge extrema if closer than ¢ from an existing extrema
otherwise store the extrema
end for each
erase old partitions of &’
partition 8’ on the inside each stored extrema
end else if

policy found in the abstract space S8’ will also result in an optimal policy in the ground state space
S. The other two categories (a*-irrelevance an m*-irrelevance) do not share this same guarantee,
though are in some ways more valuable because they can abstract down the size of the state space
significantly better than the other three methods.

One of these classes of abstractions, the a*-irrelevance abstraction, which aggregates two base
states together if they share the same optimal action, is the focus of this paper. One of the
most popular types of abstraction techniques, tiling, falls into this category. Examples of common
tile based abstractions include CMAC [4], and U-tile distinction [9, 2]. These methods aggregate
ranges of a continuous state space to discrete abstract states, resulting in a finite environment for
a RL algorithm to learn in. While tile based methods have been shown effective in a number of
situations, there are serious drawbacks to using them. Engineering a tiling is typically done by
hand, and it can be very difficult to find an appropriate tiling for a given problem or to correctly
set the parameters in methods that build a tiling during the learning process. Automatic tiling
methods [3], that construct tilings during the learning process, have shown to be very sensitive to
parameter choices. Recently, tiling methods have been shown ineffective in the double pole balance
setting, a challenging RL standard problem [6].

Here we propose and evaluate an automatic tiling method called maximum density separation
that efficiently learns how to abstract a space but still allows a learner to converge to the optimal
policy. This abstraction is applied to the one dimensional state space produced by the RL-SANE
algorithm [10] which allows us to focus on the aggregation technique and not feature space dimen-
sionality reduction. This method utilizes the distribution of observations to choose more intuitive
abstract states to improve the speed of learning. It should be noted that the neural network that
is involved in the process is also evolving over time and is able to learn optimal policies on difficult
problems even when using a fixed tiling, however, we seek to reduce the burden on the neural
network in the learning process by using a better tiling approach. Effective automated tiling tech-
niques will eliminate the difficult manual process of designing state abstractions. When used in
conjunction with feature space dimensionality reduction techniques, automated state aggregation
methods will greatly increase the scalability and applicability of existing RL algorithms.

We show via empirical study on the mountain car and double pole balance benchmark RL
problems (Figure 3) that the maximum density separation algorithm proposed here allows the
learning algorithm to significantly improve its rate of convergence to n* when compared to the
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base RL-SANE algorithm using a fixed tiling and another more simplistic automated approach.
Additionally, we show that our automatic method is capable of creating a more compact abstract
space than a traditional fixed tiling approach.

In the next section we give background on the RL-SANE algorithm we use for dimensionality
reduction. Next, the maximum density separation algorithm is introduced and explained in detail.
This method is then applied to the two problems given in the Experimental Setup section, and the
results of this study are given in the Experimental Results section. Finally, the section concludes
with a summary of our contributions and some future directions.

3.3.1 Background

For any dimensionality of input space S the ANN layer of RL-SANE takes the input measured
across m dimensions and reduces it to a single output value z € [0,1] corresponding to a single
abstract state s’ € §’. This one dimensional output space can still represent infinitely many states,
so a tiling is applied to it. The fixed tiling simply splits S’ into a number of equal sized tiles with
no consideration given to the exact position of where each split occurs. The tile boundaries are
suboptimal since no consideration is given to how observations will gather in the space. However,
the ANNSs used in this approach are not fixed. They are produced and adapted through the use
of the NEAT neuroevolutionary algorithm [11]. The NEAT algorithm adapts the ANNs to fit the
observed ground states to the structure of the abstract state space making the placement of tile
boundaries less critical. This ability of RL-SANE to adapt to the structure of a specified abstract
state space improves its ability to discover 7* over other tile coding approaches. The original RL-
SANE algorithm included a user specified parameter 5 to determine the number of tiles to lay over
S’. Evidence displayed in [10] shows that the algorithm’s overall convergence is sensitive to 3. To
overcome the limitations of a fixed tiling we propose here an alternative which can work to provide
better tiling layouts across the space and allow the RL-SANE algorithm to quickly converge to an
optimal policy without the need for careful estimation of an ideal 5 parameter.

3.3.2 Maximum Density Separation

The MDS method can place the boundaries of a split anywhere in the state space and can add or
remove as many abstract states at a time as the algorithm determines necessary. Similar to that
method, the previously learned Q-values in each of the old tiles are blended together to form the
initial Q-values of the new tiles. This method intuitively views dense clusters of observations as
belonging to a single state, and abstracts the state space so that these dense clusters are located on
separate tiles from one another. The split between tiles occurs at the farthest point between two
dense regions of observations. This approach is principled by the idea that nearby states will prefer
the same action, however the size of each these groups may vary, so we must use an adaptable
partitioning solution.

There are two main challenges related to the MDS approach. The first is how to estimate the
density of the space or otherwise cluster observations, and the second is deciding the appropriate
time to reassess the state space. In the context of the first problem, MDS can be thought of as a
framework where an appropriate clustering or density estimation technique can be applied at the
discretion of the user. For example, it might be known that the states occur in very tight clusters,
so a clustering algorithm that is designed to find such clusters should be used in this case. There
are numerous clustering approaches that can be incorporated; the reader is directed to a recent
survey on the field for more information [13]. If specifics about the distribution of observations
are unknown, then kernel density estimation can likewise be used to find the peaks of the sample
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Algorithm 3 Maximum Density Separation (MDS)

required: number of bins for frequency distribution
output: new abstract state mapping
<embedded within an RL algorithm>>
get next state s’ by following 7* from state s
if s’ |= fail state
s:=3s

increment frequency distribution (s)
else if s’ == fail state

locate relative extrema in frequency distribution

erase old tiles of &’

partition &’ in the center of two rel. maximums
end else if

Vv
\ Goal

Figure 3: Depictions of the mountain car (a) and double pole balance (b) problem domains.

density distribution. One candidate procedure for this purpose is the mean shift algorithm [14], but
there exist many other options. In this work, we model the density of the abstract state space using
a simple histogram approach as it does not require much additional computation to employ within
the learning algorithm. While more complicated clustering or density estimation methods can be
employed, the tradeoff in terms of possibly more accurate state boundary identification must be
balanced against the time cost of performing the analysis.

Determining when to repartition the abstract space can have a large impact on the convergence
speed of the learning algorithm. If the tiles are repartitioned too frequently the learner may not
have time to learn accurate (Q-values on the abstract states, causing the algorithm to converge to
a less than optimal policy. On the other hand, attempting to learn in a poorly partitioned space
can lead to wasted update cycles as the ()-values do not give meaningful direction to the learner.
In our implementation of MDS we repartition the space whenever a failure state is reached by the
learner since it is possible that a new partitioning might help the learner avoid failing the problem
in a subsequent attempt.

An overview of the MDS method is given in Algorithm 3. For a single run of the problem in
a given RL algorithm, this method records the frequency of observations across the state space
until a failure or the goal state is reached. On a failure, the constructed frequency distribution
is searched for relative extrema, using a soft-thresholding approach to prevent small fluctuations
in the distribution from leading to many spurious extrema. Once the relative extrema have been
identified, a partition is placed in the space in the center of every two relative maximums. The
splits between abstract states are made in this fashion in accordance with the maximum margin
principle [12], which seeks to minimize the structural variance in a hypothesis. Positioning the
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splits as far as possible from the dense regions of observations minimizes the risk that in the next
run of the problem new observations belonging to one dense region will spill into an adjacent state
and mislead the learning there. This process is linear in the number of bins used to measure the
frequency distribution, and in practice had only a negligible impact on the running time of each
generation of the algorithm, and so is a feasible abstraction algorithm in terms of time complexity.

3.4 Incremental Feature Selection

This work is about automated feature selection for RL. Although feature selection has been ex-
tensively studied for supervised learning [15, 16], existing methods are either inapplicable or im-
practical in the RL setting. Filter methods rely on training data, which is not available in RL,
to select features. Wrapper methods require repeatedly executing a learning algorithm on each
candidate feature subset, and are impractical for RL due to their prohibitively high computational
and sample cost. A promising approach is to embed feature selection into the training process of a
learning algorithm. However, the embedded approach has to be tailored for the learning algorithm
of interest.

In this section we describe an embedded incremental feature selection algorithm for a neu-
roevolutionary function approximation algorithm NEAT (NeuroEvolution of Augmenting Topolo-
gies) [11], which we call IFSE-NEAT. The main idea of IFSE-NEAT is to embed incremental subset
selection into the neuroevolutionary process of NEAT. Instead of evolving networks with the full
set of features as NEAT does, IFSE-NEAT initializes networks with one feature. IFSE-NEAT then
iteratively adds features to the current best network that contributes most to its performance
improvement while evolving the weights and topology of that network.

3.4.1 Background

Prior to this work, feature selection for reinforcement learning has focused on linear value function
approximation [17, 18] and model-based RL algorithms [19]. For neuroevolution algorithms such
as NEAT, only random search has been explored [20]. In this light we can see that IFSE-NEAT is
a novel approach in feature selection for RL.

Our experimental study has shown several promising results for IFSE-NEAT. We find that the
algorithm is nearly unaffected in its ability to select relevant features as the number of irrelevant
features grows very large. This, in turn, allows for a better policy to be derived than NEAT.
Additionally, by using only a few relevant features we are able to learn a good policy while limiting
model complexity.

3.4.2 Combining Feature Selection and Genetic Policy Search

NEAT Neural networks (NNs) are efficient function approximators that can model complex func-
tions to an arbitrary accuracy. The drawbacks of using NNs in RL domains have been that NN
design was a difficult manual process and training was a supervised learning process. Neuroevo-
lutionary approaches, which utilize genetic algorithms to automate the process of training and/or
designing NNs, eliminate these drawbacks, allowing NNs to be easily applied to RL domains. Neu-
roEvolution of Augmenting Topologies (NEAT) is a novel RL framework based on neuroevolution.
By evolving both the network topology and weights of the connections between network nodes,
NEAT solved typical RL benchmark problems several times faster than competing RL algorithms
with significantly less system resources [11].

However, one limiting issue with NEAT is that it assumes that all features provided by the
environment are relevant and necessary, and attempts to incorporate all the features into its solution
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Algorithm 4 IFSE-NEAT(N ,k,L,p)

1 //N: set of all available features
1 //k: number of features to select
//L: number of generations to evolve
//p: population size
BACKBONE < outputNodes //initialize the BACK BONE
SELECTED_SET < null //initialize the selected feature set
for i< 1: k do

BEST_NETWORK < null

BEST_FEATURE <+ null
10: //iterate through all candidate features outside SELECTED_SET
11: forg«+1: N—ido

12: //create new network Ny based on candidate feature Fy
13: Ny, + COMBINE( Fy, BACKBONE)

14: //create a population of p networks based upon Ny
15: population < INITIALIZE-POPULATION(Ny, p)
16: //evolve population using NEAT for L generations
17: for j < 1: L do

18: NEAT-EVOLVE((population)

19: end for

20: //select the champion from population

21: champion <+ BEST-QUALITY (population)

22: if champion > BEST_NETWORK then

23: BEST_FEATURE <+ Fy

24: BEST_NETWORK < champion

25: end if

26: end for

27: Add BEST_FEATURE to SELECTED_SET
28: BACKBONE < BEST_NETWORK

29: end for

networks. The extraneous features will unnecessarily complicate the networks and severely slow
the rate at which NEAT is able to derive an effective policy. In the following section we describe
a new algorithm based upon NEAT that builds a small set of required features while learning an
effective policy.

Incremental Feature Selection Embedded in NEAT (IFSE-NEAT) To deal with the
exponential search space, we adopt sequential forward search (SFS), an efficient search strategy
which has proven effective in finding near-optimal subsets in supervised feature selection. Starting
from an empty set, SFS iteratively adds one feature at a time to the current best set until a
desired number of features k are selected. Since in each of the k iterations, it goes through all
N features outside of the current best set, the time complexity of SFS is O(kN). Although SFS
does not guarantee the optimal solution, it is capable of selecting relevant features while keeping
irrelevant or redundant features out of the final subset. The method is particularly suitable for
high-dimensional problems where large portions of the features are irrelevant or redundant.

Algorithm 4 provides a basic overview about how IFSE-NEAT functions and is able to select
a minimal set of features. IFSE-NEAT incrementally adds features to a NN that we call the
BACKBONE. The BACK BON E network utilizes the best discovered feature set and represents
the current best derived policy. It is persistent through additions of new features to the feature set
and it is what makes IFSE-NEAT an embedded algorithm as opposed to a straightforward wrapper
algorithm.

Initially, the BACK BON E network consists of only the output nodes (line 5). Then, for each
of the individual features available, F;;, a NN is generated by connecting a single input node to every
output node (line 13). In parallel, or independently, a population of networks based upon a single-

Approved for Public Release; Distribution Unlimited.
15



BACKBONE

Evolved

Figure 4: This figure illustrates how a candidate feature is incorporated into the current
BACKBONE network to create a new base candidate network, N,. The new feature Fj is
introduced to the network and is provided connections, the dashed lines, to every output node.
BACKBONE in this figure represents the best evolved solution network using only the previously
selected features.

input base of networks is generated. Each network in the population share the topology of the base
network, but has randomly generated weights on the edges joining the nodes. The population of
NN are then evolved via the standard NEAT algorithm for L generations (lines 17-19). At the end
of the NEAT process, the champion of each population (the network representing the best policy) is
identified. The champions (each corresponding to a candidate feature Fy) are then compared against
one another to decide the BEST _NETWORK and BEST_FEATURE (lines 22-25). It is our
hypothesis that the best performing network, BEST_NETW ORK , will point to the most relevant
feature. Therefore, the BEST_FEATURE that produced the BEST_NETWORK is then added
to the SELECTED_SET (line 27), and the BEST_NETWORK becomes the BACKBONE
(line 28) for subsequent iterations where the algorithm will determine the next features to add to
the feature set.

In the subsequent iterations the remaining features are independently combined with the BACK BONE

network and then re-evaluated. As in the first feature selection iteration, new populations of NNs,
random variations of the base networks, are again evolved by NEAT for L generations. The algo-
rithm stops once a desired number of features are selected. Alternatively, the algorithm can stop
when one of the populations produces a network that represents a suitable solution to the problem.

The process for combining the BACKBONE network, COMBINE(F,,BACKBONE) (line
13), is illustrated in Figure 4. In this process a new base network N is created for a candidate
feature F, by connecting Fy to each of the output nodes. The weights of these new edges are
assigned zero to preserve the policy of the BACKBONE network. Preserving the policy of the
BACK BON E network bootstraps the successive networks and improves IFSE-NEAT’s ability to
determine the relevance of potential new features.

Analysis of Algorithm 4 shows that time complexity of IFSE-NEAT is O(kN) times the NEAT
process, which itself is dependent on the population size p and the number of generations L. In
practice, however, we can do better than this. For the first few selected features, L can be very
small and the algorithm can still identify relevant features, allowing a significant speedup to roughly
O(N) times NEAT. Once the BACK BON E network is reasonably fit, L must be increased to allow
new features enough time to have an impact in the more complex network.
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3.5 Sample Aware Feature Selection

Here we propose Sample Aware Feature Selection-NEAT (SAFS-NEAT), an embedded feature
selection algorithm for RL. Intuitively, this method seeks to restrict the learner to a low-dimensional
view of the environment, and incrementally expands this view to include new dimensions as observed
samples expose potentially relevant features. Since learning algorithms generate samples from the
environment during their execution, a large data set of samples can be gathered quickly and easily.
By further exploiting the structure of the samples, a class label can be designated and supervised
feature selection algorithms can then be brought to bear on the problem. As indicated above, this
procedure is embedded in the NeuroEvolution of Augmenting Topologies (NEAT) genetic policy
search algorithm [11]. NEAT was chosen for its ability to evolve policies in continuous state and
action spaces without the need for additional abstraction devices. Additionally, forward selection
of relevant features fits well with the complexification concept of the NEAT algorithm: start with
a minimal complexity solution and evolve additional components as necessary.

We demonstrate the effectiveness of SAFS-NEAT in two challenging simulation environments.
The first is a racing domain described by continuous state and action spaces. The racing domain
requires the agent to make precise control decisions while knowing only what is visible from the
driver’s perspective. Second, a more challenging variant of the classical RL pole balancing domain,
the double inverted pendulum balancing problem [21], where the agent must learn a complex policy
in a continuous state space using discrete actions to control the motions of a cart in order to balance
two poles. We empirically show that SAFS-NEAT is able to learn near optimal control policies in
both environments even as the dimensionality of the environments increases. The algorithm also
outperforms a competing feature selection algorithm, FS-NEAT [20], in these domains, while not
requiring more samples than the basic NEAT algorithm.

The rest of this section is divided between relevant background material to the approach in
Section 3.5.1 and the embedded feature selection algorithm itself in Section 3.5.2.

3.5.1 Background

Reinforcement learning (RL) is designed to train agents to make optimal choices in sequential
decision making problems. The problem environment can be compactly expressed as a Markov
Decision Process (MDP) described the tuple (S,.A, T, R). In this work we consider problems that
describe factored state spaces S such that S = {Sy x S} x ... x S,} for a problem with n state
variables. Similarly, we consider the action space A to be factored as well. For every point in the
state space s € S a point in the action space a € A must be selected by the agent. Each state s is
an n dimensional vector (sg, s1,...,S,) where each component s; takes a value in the domain of its
respective state variable (feature) S;. The notation and semantics for each action a is analogous to
this description. The transition function T'(s’|s, a) governs the dynamics of the environment, or the
probability of arriving in state s’ after taking action a in state s. The reward function R(s,a) gives
the agent a reward value r € R to every transition. Both 7" and R are assumed to be unknown by
the agent in our work. As the agent explores the environment, the reward values seen allow the
agent to build a value function which indicates the expected value of taking a particular action in
a particular state based on past experience [22, 23]. The agent seeks to learn a policy function,
7 : S +— A which maximizes the aggregate sum of rewards from any start state to the goal. Such
a function is called the optimal policy 7*, and is the learning target for agents in our problem
formulation.

Feature selection seeks to reduce the number of variables in a problem while still permitting
an optimal (or near optimal) learning model to be constructed. Existing comprehensive surveys
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categorize feature selection algorithms for supervised learning into filter, wrapper, and embedded
approaches based on their subset evaluation method [16, 15]. Filter based methods use intrinsic
data characteristics to guide the selection process, and with few exceptions [24, 25], have been
largely unstudied in the RL domain due to the lack of an initial data set and a clear replacement
for the supervised class label. The methods described in [24, 25] place restrictions on the samples
used which make them unsuited for on-line feature selection. Wrapper based methods construct
learning models from competing candidate feature subsets and the performance of the learned
models are used to rank the subsets. These methods are prohibitively expensive to apply in RL
due to the number of models (policy functions) that must be constructed. Embedded approaches
perform feature selection during the model building phase, leading to a single learned model using
a subset of features. This approach is readily adaptable to the RL domain and is the structure that
we adopt here.

While any RL algorithm could potentially be the target of an embedded feature selection algo-
rithm, we elected to use the direct policy search algorithm NeuroEvolution of Augmenting Topolo-
gies (NEAT) for its ease of use and ability to handle both discrete and continuous state and action
spaces without additional abstraction layers [11]. Here we give a brief overview of the NEAT
algorithm, more details can be found in [26]. NEAT uses neural networks (NNs) to efficiently ap-
proximate policy functions, where the input layer is provided the current state and the output layer
produces an action to be taken in that state. NEAT begins with a population of simple perceptron
networks and gradually builds more complex ones through a process called complexification. In
every generation of the evolutionary process, the networks in the population are evaluated based
on the quality of the policy they produce, and those demonstrating the best quality (or fitness)
survive into the next generation. Derivative networks based upon the surviving networks are gen-
erated by the mutation operators. These mutation operators modify the weights of the edges and
even add topological elements such as new nodes and connections. These operators are activated
with varying probability over the population of networks. The results of NEAT are NNs that are
automatically generated, not overly complicated in terms of structure, and custom tuned for the
problem at hand. A number of parameters control the evolutionary process and are discussed in
Section 4.5.1.

Feature Selective-NEAT [20] (FS-NEAT), an early approach for on-line feature selection, dif-
fers from NEAT in that all NNs in the initial population start with a single connection between
a randomly selected input and output. Features are randomly attached to the NNs in subsequent
generations, allowing the algorithm to stochastically arrive at a potentially good set of features
during evolution. The evolutionary process treats the inclusion of another input node the same as
adding any other connection to the network, such as from a hidden node to an output. One advan-
tage of this algorithm is that it takes no additional computational time to evaluate features beyond
the standard NEAT evolutionary search for better networks. Relevant features are identified based
on the fitness of the networks which include them, and high fitness scores cause those networks to
propagate, thereby selecting the feature into the population. However, random selection of features
leads to the main limitation of this method. In the event that the ratio of relevant to irrelevant
features is low, FS-NEAT will likely select mostly irrelevant features to include, harming the qual-
ity of the learned policy. Even when relevant features are added to the network, the evolutionary
process must work around any previously added irrelevant features, further complicating the NNs
and slowing the arrival at a reasonably fit policy. Feature Deselective-NEAT [27] is a similar al-
gorithm which removes connections from an initially fully connected network to reduce the subset
size. This approach is best suited to situations where there are many relevant features, and shares
FS-NEAT’s limitations due to the random search. Incremental Feature Selection Embedded in
NEAT has also been recently explored [28]. This method performs a sequential forward search and
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evaluates a feature subset by performing evolution for a few generations. This principled feature
selection method is successful at finding a good feature subset, however it is sample inefficient,
costing a multiple of n more samples than the method we propose in this work.

3.5.2 Sample Aware Embedded Feature Selection

Algorithm Description Designing a feature selection algorithm requires that both a search
strategy and an evaluation measure be specified. First, let us consider the search component. For a
problem with n features, the number of candidate subsets is 2", so for any non-trivial problem, an
efficient search heuristic must be employed to efficiently manage this exponential space. Here we
adopt sequential forward search (SFS), an efficient search strategy which has been widely used in
supervised feature selection [29]. Starting from an empty set, SFS iteratively adds one feature at a
time to the current best set until a desired number of features are selected or some other termination
criterion is met. Although SFS does not guarantee the optimal solution, it is capable of selecting
relevant features while keeping irrelevant or redundant features out of the final subset, given an
accurate relevance measure. Additionally, SFS is consistent with the complexification principle
underlying the NEAT algorithm. While traditional NEAT only adds hidden layer topological
structure over time, SF'S adds nodes to the input layer.

An evaluation measure is needed to differentiate between the quality of two candidate feature
subsets. Given the choice of NEAT as a learning algorithm, a simple approach would be to use a
wrapper strategy to tailor a feature set to NEAT, similar to what was done for IFSE-NEAT [28].
Following the SF'S search, if we have previously selected k features, choosing feature k4 1 amounts
to initializing n — k NEAT instances, each pairing a different candidate feature with the selected
subset. The subset that causes the highest performance gain after all instances terminate is the new
selected subset. This process repeats until the subset search finishes, resulting in O(n?) runs of the
NEAT algorithm, an expensive task in terms of both computational and sample complexity. Instead
of relying on the performance of the algorithm, we propose a Sample Aware Feature Selection
evaluation measure embedded into the NEAT process (SAFS-NEAT), eliminating the need for any
additional runs of the NEAT algorithm to perform feature selection. We provide details of the
measure later in this section.

These components are encapsulated in Algorithm 5. Prior to selecting the first feature, a data
set D is needed. Such a data set can be provided from pre-existing data or by other means, but
if unavailable a suitable initial D can be constructed by running NEAT for a single generation
and using the samples generated by the champion. The population is then initialized to have no
inputs connected before starting the main loop of the algorithm. The outer loop identifies the best
feature S; given the current selected subset and D (see Algorithm 6), and then combines \S; with
the population. This is done by adding zero weight connections from input S; directly to all output
nodes. The connection weights are set to zero to preserve the prior policies in the network and
allow evolution to determine how much the new feature should affect the existing structure. This
mechanism allows feature selection to be embedded into the NEAT algorithm without resetting
learning whenever the feature set is modified. The inner loop causes NEAT to use the current
selected feature subset until a stagnation criteria is met (discussed shortly). Termination occurs
when NEAT converges on a worse policy with the new feature subset than with the previous
subset. Other stopping criteria can be integrated, such as a target fitness or a cap on evolutionary
generations.

Stagnation plays a key role in Algorithm 5. It both directs when feature selection is to occur,
and can bound the complexity of the algorithm. Instead of letting NEAT evolve for a large number
of generations, stagnation directs evolution to stop as soon as the fitness gains diminish, indicating
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Algorithm 5 IFSE-NEAT (w, €)

1: //w: stagnation window size

2: //e: stagnation value threshold

3: Sact+ EMPTY //initialize the selected feature subset
4: population <+ INIT-POP(fully-connected-network)

5: D <+ NEAT-EVOLVE(population)

6: best < BEST-QUALITY (population)

7: population < INIT-POP(no-connected-features)

8: //evolve and add features until fitness decreases

9: repeat

10: Si < BEST-FEATURE(Sact, D) //see Algorithm 6
11: Add S; to Sact

12: //add current best feature S; to population

13: population < COMBINE(S;, population)

14: //build stack of the 2w recent champions for stagnation check
15: local_champions + EMPTY

16: //evolve population using NEAT until stagnation
17: repeat

18: D < NEAT-EVOLVE (population)
19: //store the champion from population
20: Push BEST-QUALITY (population) on local_champions

21: until STAGNANT(local-champions, w, €)
22: prev_best < best

23: best < Pop from local_champions

24: until best.fitness < prev_best.fitness

25: return prev_best

that learning is near-complete with the current feature set, and better gains might be found by
expanding the subset. Stagnation requires a window size parameter w, and a fitness improvement
threshold e. Since fitness improvements can be noisy, stagnation measures the average fitness of
the champion network over one w duration and compares it to the average over the following w
generations. If the difference in fitness across this 2w period is less than € then learning is considered
to be stagnant, and the inner loop is stopped. In practice, both parameters are easily set: w to
a small number of generations (i.e., 5-15), and € to a small fraction of the maximum attainable
fitness for the problem.

Evaluation Measure Collecting samples during the NEAT evolutionary process yields a data set
D = {s;,a;,r;,s i}le, one tuple for each of d interactions with the environment. The components
s and s’ are vectors of length n representing the current and next state feature values, respectively,
r is the immediate reward, and a is a vector of length m containing each of m action decisions
that were simultaneously made in state s. Note that the environment reports the value of each
feature S; whether or not S; is in the selected subset. With this data set, the ability to use
supervised filter feature selection techniques arises if a class label can be assigned. Two recent
feature selection algorithms for RL have addressed this difficulty by using r as the class label [24, 30].
This designation worked well in both of those scenarios because samples were gathered from known
good policies. During learning, however, each feature may have only a weak correlation to the
reward value since the current 7 may be distant from «*. This problem is magnified in the common
cases where reward information is delayed or sparse. Instead, we choose to study the relationship
between the feature values of s, s’, and a. We seek to measure the dependency in the change of
each state value (s;—s; = As;) given the action a; taken at state s; for each element in the collected
data set D.

There are various dependency measures in the feature selection literature [31, 16]. Here we use
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Algorithm 6 BEST-FEATURE(Sy., D)

: //Sact: set of currently selected features
1 //D: data set of collected samples from environment
Sbest « So
best-score — —1
for i =1— (n — |Sact|) do
relevance < 0
for j=1— mdo
relevance < relevance + Ip(AS;, A;)  (using Eq.(1))
end for
10: redundancy < 0
11: for Sy € Sqct do

12: redundancy < redundancy + Ip(Si, Sk)
13: end for

14: //keep track of best feature and its score
15: if best-score < —relevance yhen

redundancy

16: best-score +— —Lelevance
redundancy

17: Shest < Si

18: end if

19: end for

20: return Sy

mutual information

Ip(X,Y) = /Y/Xp(w,y)log <1%> dz dy, (1)

which measures the dependency between two continuous random variables X and Y based on
some sample data D. The higher Ip(X,Y) is between the two variables, the more related the
distributions of X and Y are. A value of zero from the measure indicates that the variables are
independently distributed. Here we are interested in Ip(AS;, Aj) for each S;,1 < ¢ < n and
Aj,1 < j < m. Intuitively, features with values that appear to change independently with respect
to any action selection are of little obvious use to the policy and would be given low scores. This
measure is equally applicable for discrete variables by exchanging integrals with summations in
Eq.(1). More research is required in the area of filter feature selection for RL to determine the best
relevance measurement technique for this type of data, however, we note that mutual information
is intuitively appealing and works well empirically.

The complete evaluation measure is expressed in Algorithm 6. This algorithm follows the
minimal-redundancy-maximal-relevance (mRMR) strategy to rank features [32]. Calculating rele-
vance of a feature S; requires summing the pairwise mutual information (as computed in Eq.(1))
between AS; and each of the m action variables to capture how a feature responds to each indi-
vidual action available. The redundancy measure is similarly carried out by summing the mutual
information between the candidate feature and each feature that has already been selected. The
score of the feature is the quotient of its relevance score over its redundancy score, and the feature
with the highest score is returned from the function. Note that this computation needs only to be
done for features which are not currently included in the subset. Computing mutual information

is linear in the number of samples, and this cost is dominated in practice by the cost of running
the NEAT algorithm.
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4 RESULTS AND DISCUSSION

We have thoroughly evaluated and analyzed our approaches to state space abstraction and feature
selection. We report on these empirical results here.

4.1 Pertaining to Evolutionary Tile Coding
4.1.1 Experimental Setup

We conducted an empirical comparison of CMAC, ATC, and EvoTC on two well known RL bench-
mark problems with continuous state spaces. The purpose of these algorithms is to reduce the size
and complexity of domains’ state spaces and enable a RL algorithm to discover an optimal policy
for problems in those domains. We measure the effectiveness of the approaches by the number of
states in the abstract state space and by the number of learning updates required by the RL algo-
rithm to learn an optimal policy. The fewer the number of states in abstract state space translates
to the method’s ability to more effectively abstract the state space. And, the fewer the number of
updates required by the RL algorithm to learn an optimal policy, the better the state abstraction.

The following is a description of the benchmark problems used and our experimental setup.
It should be noted that all the methods require some parameter tweaking in order to achieve
their best performance. In our comparisons we used the best found parameter settings for each
method. The parameters used for each method and problem are specified below. Each method was
paired with the RL algorithm SARSA [22] to derive policies. Also, the results shown for EvoTC
are representative of the median value of 25 separate runs. Because EvoTC is dependent on a
stochastic search, several runs with different random seeds were necessary to properly characterize
its performance.

Mountain Car The mountain car problem is a classical control RL problem in which the learner
has to derive a policy to enable an automobile to escape a deep valley. The car does not have
enough power to drive up the sides of the valley starting from a standing position. To get out
the driver must build up enough momentum by rocking back and forth. Two continuous features,
position and velocity, specify the state. At each time step the RL algorithm has to select one of
three possible actions; accelerate to the left or right, or coast. A reward signal of -1 for every time
step the car has not reached the goal state is provided to encourage the discovery of a policy that
reaches the goal state in as few time steps as possible.

We use a problem set of 100 different starting positions and initial velocities to represent the
problem domain in our experiments. The algorithms are evaluated based on the average perfor-
mance over all instances in the problem set. For our problem set an optimal policy enables the car
to escape the valley in average of 50 time steps.

In our experiments for CMAC we used 2 layers of tiling with 11 tiles per feature for each layer.
This allows a maximum of 242 possible unique abstract states. ATC requires the split threshold
parameter be specified. For the mountain car problem we found a value of 521 to work well. EvoTC
requires the mutation probabilities be specified. For this problem values of 32% for shift and 5%
for divide per tiling per generation were used. A population size of 100 was also used for each
evolutionary generation.

Pole Balance The pole balance problem models a car balancing a long pole attached on a
hinge [33]. The car is free to travel on a short track to keep the pole balance vertically over the car.
Failure occurs if the pole falls more than 12 degrees from vertical or if the car rolls off either end of
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Table 1: Results for mountain car

Number of Updates | Number of States
CMAC | 1.22e+405 177
ATC 1.88e+05 83
EvoTC | 2.00e+07 2

the short track. The state is represented by 4 continuous features; the position and velocity of the
car, and the angle and angular velocity of the pole. There are three available actions; accelerate to
the left, to the right, and to coast.

We use a problem set of 20 different initial feature values in our experiments. The goal for the
algorithms to find a policy that keeps the pole balanced for at least 10° updates without dropping
the pole or exceeding the bounds of the track.

For CMAC, the settings of 2 layers of tilings with 11 tiles per dimension of input per layer is
again selected for this test for a maximum of 29282 states. The settings selected for EvoTC are
30% for shift and 12% for divide. We were unable to successfully apply ATC to this problem.

4.1.2 Results and Discussion

The results of the mountain car and pole balance are listed in Table 1. All three methods were
able to converge to an optimal policy. We can see that CMAC was able to solve the mountain car
problem in the fewest number of updates. This is slightly surprising because it was shown that
ATC was able to outperform CMAC on this problem in [3]. We were not able to reproduce that
result’. This result is intuitive however, in that the fixed CMAC tile coding was tuned for this
problem and was found as a result of many trial runs. ATC and EvoTC have to learn their tile
abstractions and this requires some additional time and updates.

It should be noted that EvoTC is penalized by the update metric because all the updates re-
quired by the failed members of the population are included. Including the aggregate updates
required for all the members of the population is necessary to get an accurate measure of computa-
tion time required. However, each evaluation of a tiling per generation could be done independently
in parallel, which would result in a significant speed up of this algorithm.

Table 1 also shows the size of the abstract state space required for each method. CMAC only
uses 177 of the potential 242 states available. EvoTC and ATC are able to solve the mountain
car using substantially smaller state spaces which shows they derive much more efficient state
abstractions. This suggests that they will be able to scale more effectively as the size of the state
spaces increase.

The most striking result of this experiment is that EvoTC was able to derive an optimal policy
using an abstract state space consisting of only two states. EvoTC was consistently able to find
this state abstraction during our experimentation. The mountain car problem is one of the classic
RL control problems. It is considered difficult due to its continuous state space. EvoTC simplified
it to a simple two state problem which is trivial for a RL algorithm to find a policy for. Not only
that, EvoTC was able to eliminate the need for an entire feature. The only split in the state space
occurs at .477 of the velocity vector. There are no divisions over the position feature which means
it is not relevant at all to solving the problem. This result highlights the power of automated state
abstraction to find unintuitive and effective abstractions.

!The authors of the ATC work were contacted and informed of this.
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Figure 5: This figure shows how EvoTC algorithm discretized the mountain car state space

Velocity
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Figure 6: This figure shows how the ATC algorithm discretized the mountain car state space
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Table 2: Results for Pole Balance

Number of Updates | Number of States
CMAC | 3.69e+08 5379
ATC failed to converge failed to converge
EvoTC | 1.04e+09 61

This experiment also shows how important the design of the abstraction can be. Figures 5 and
6 shows the abstract state spaces derived by EvoTC and ATC respectively. The abstraction derived
by ATC is significantly more complex than the one derived by EvoTC and includes divisions across
the position vector. ATC cannot find the same abstraction that EvoTC is able to find because it
arbitrarily divides each tile evenly. As a result it had to derive a much more complex abstract state
space to learn an equivalent policy.

Table 2 shows the results we obtained applying these methods to the pole balance problem.
The pole balance problem is significantly more difficult than the mountain car problem in that it
has double the number of continuous features. As such, we can see that CMAC still requires the
fewest updates, but required significantly more abstract states in order to solve this problem. In our
experiments we were unable to find a parameter setting that enable ATC to converge. Once again
EvoTC was able to derive an abstraction with far fewer states and still allows the RL algorithm
to find an optimal policy. EvoTC still required an order of magnitude more updates than CMAC,
however the increase in number of updates and states required by CMAC compared to EvoTC
further implies that EvoTC will scale more effectively as the size of the state space is increased.

In our testing we found that all methods were extremely sensitive to untuned parameter settings.
Slight changes to the parameter settings that work for a domain could very easily prevent these
methods from converging again. This was especially true of the ATC algorithm, which required a
substantial amount of trial and error to find a parameter setting that worked for the mountain car.
Finding settings for CMAC and EvoTC was significantly less time consuming, but still required
some trial and error.

Although EvoTC and CMAC were able to solve both benchmark problems it does not appear
that either method will scale adequately as the number of features that describe the state space is
increased. Both methods are tile coding based and are linear abstractions of the state space. As
a result, although the abstract state spaces found by these methods are significantly smaller than
the actual state space, they will still scale proportionally as the number of features is increased. It
may be the case that non-linear state abstraction methods such as RL-SANE [10] are necessary as
the number of features are increased.

4.2 Pertaining to Continuous State Space Abstraction
4.2.1 Results and Discussion

Table 3 shows the average fitness over each of the problem sets for the mountain car and double pole
balance domains. The mountain car problem shows all five methods performing very similarly and
all rapidly converging to a policy that takes on average approximately 50 time steps to navigate
the car from the valley. Both of the more sophisticated methods, MDS and TRE, lag behind
the top performers somewhat, which indicates that this problem can be easily learned without
complicated abstract state repartitioning. These results do serve to show that using automatically
repartitioning of the abstract state space does not hurt the overall convergence of the learner
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Mountain Car | Double Pole Balance
MDS 3.36 + 1.25 13.5 + 5.93
TRE 63.64 £+ 23.57 58.13 £ 13.48
Large 14.77 £ 8.6 24.51 £+ 15.59
Small 14.82 £ 8.7 24.48 + 15.43
Fixed 50 10

Table 3: Average number of final abstract states £+ stdev and optimal number of states for the
fixed abstraction.

on simple reinforcement learning problems even when the problem is simple enough that a fixed
abstraction is sufficient.

Examining the fitness curves of the double pole balance problem shows several trends. The
most obvious conclusion that can be drawn is that the automatic methods are all able to converge
towards the optimal policy at a greater rate than the fixed RL-SANE algorithm. If the number
of abstract states are tuned, the fixed RL-SANE method can find the optimal policy at a similar
rate as the other algorithms, however, if a range of possible good parameters are used instead the
algorithm does not do nearly as well. On the contrary, the mutation methods, both small and large,
are able to overcome the arbitrary initial parameters and efficiently repartition the abstract state
space to allow the learner to quickly converge to the optimal policy. The MDS and TRE methods
started out near the fixed method but rapidly improved to the mutation methods. Towards the end
of the reported generations the MDS method shows the best performance overall, validating the
idea that allowing a more specialized partition of the state space can lead to improved convergence
properties of the learner. TRE proves to be an able abstraction method as well, and the performance
of that algorithm is noteworthy early on in the learning process. We can see that it experiences an
almost immediate jump in fitness, which may be due to its heuristic which favors separating those
observations which may be able to reach previously unexplored areas of the state space if they are
able to follow actions that are not preferred by other nearby observations.

Table 3 contains the average final number of abstract states for each automatic abstraction
method as well as optimal number of states for the fixed tiling. We can immediately see that the
optimal number of states for the fixed RL-SANE algorithm is not the number of states that each of
the automatic methods tend to; only TRE on mountain car and MDS on double pole balance are
similar. TRE tends to break up the space into many more states than the other methods, while
MDS leads the abstraction towards fewer states. This implies that there are relatively few clusters
of observations in the abstract space, but there are many repetitive substructures in these clusters
when the order of observations are considered. Both of the mutation methods converge to similar
low numbers of states in the final abstractions, which explains why their fitness measures in Table
3 are also very similar.

4.3 Pertaining to Automatic State Space Abstraction
4.3.1 Experimental Setup

Here we see what benefit MDS gives the RL-SANE algorithm in terms of convergence speed and
number of abstract states in the solution. In addition to comparing the automatic MDS method
against the fixed tiling of RL-SANE, we include another algorithm in the study, a mutation method
which allows RL-SANE to mutate the number of abstract states during the evolution of the network.
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The experiments are carried out on two benchmark RL problems, mountain car and double pole
balance.

Only two perceptions are used to define this problem, the position of the car within the valley
X, and the velocity of the car V. Time is discretized into small intervals and the learner can choose
one of two actions in each time step: drive forward or backward. The only reward that is assigned
is -1 for each each action that is taken before the car reaches the goal of escaping the valley. Since
RL algorithms seek to maximize the reward, the optimal policy is the one that enables the car to
escape the valley as quickly as possible, and therefore receive as few negative rewards as necessary.

This is a higher dimensional problem than the mountain car problem, with six perceptions being
given to the learner: the position of the cart X, the velocity of the cart X’, the angle each beam
makes with the cart, #; and 2, and the angular velocities of the beams, §] and 6. Once again,
time is discretized into small intervals, and during any such interval the learner can choose to push
the cart to the left or right or to leave it alone. In our experiment, the learner only receives a -1
reward for dropping either beam or exceeding the bounds of the track. If the learner is able to
balance to poles and not exceed the bounds of the track for 10° time steps the problem is taken to
be solved.

On each of the problems the three methods were evaluated over 25 runs using different random
seeds (the same seed values were used for all three methods). For each run, both the mountain car
and double pole balance environments used a problem set size of 100 random initial start states. We
report the average values across the 25 runs in our results. It should be noted that the mutation
and the fixed tiling approaches have a significant dependency on the initial number of abstract
states, while the MDS does not. In the mutation and fixed methods we experimented with setting
the number of initial abstract states from 10,20,...,100 and the results show either the average
performance of the algorithm over all of these boundaries, or the best performer from the 10, as
indicated. For the RL-SANE algorithm with a fixed abstraction, these initial states cannot change
during the learning process, while the mutation method is free to alter them over time. The MDS
method begins with an arbitrary abstraction over the state space which is quickly replaced by a
more competent estimate after the first attempt at learning the problem. Prior experiments have
shown that the fixed RL-SANE algorithm achieves the best learning rate with 50 abstract states
in mountain car and 10 in double pole balance, both of which are included in the abstract state
ranges that were tested on.

The RL-SANE algorithm was set to use a population of 100 neural networks per generation,
with a maximum of 200 generations of learning. Neuroevolution is provided by Another NEAT
Java Implementation (ANJI) 2. We used the Sarsa()\) learning algorithm with learning and neu-
roevolution parameters set as in [10], and we also limited each learning episode of the mountain car
to 2500 time steps to ensure termination. The mutation method was allowed to alter the number
of states by up to 5 per generation to provide regularity between generations of neural networks.
For MDS the density of the observations in the state space was estimated using a histogram of
1000 evenly spaced bins to collect observations. The exact value of this parameter is unimportant
as long as it is significantly larger than the number of expected abstract states in the solution and
an episode produces enough observations to partially fill in the space.

4.3.2 Results and Discussion

Presentation and discussion of the results is broken up in two parts based on problem domain. The
first section addresses the mountain car problem and the double pole balance problem is analyzed
in the second.

2Source code available at http://anji.sourceforge.net
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Table 4: Average number of final abstract states used + standard deviation for MDS and the
number of initial states used to derive the best performance for the mutation and fixed approaches.

Mountain Car | Double Pole
MDS 3.36 + 1.25 13.5 + 5.93
Mutation 90 10
Fixed 50 10

Mountain Car Figure 7 shows the average number of time steps taken to leave the valley over the
25 runs for the three methods. Fewer steps are better. The fixed and mutation curves shown use the
best choice of initial number of abstract states, although all values attempted gave similar results for
this problem and so are omitted for clarity. The mutation method found the optimal policy fastest
with 90 initial states, and the fixed approach did the best on 50 states. The mountain car problem
shows all of the methods performing very similarly and all rapidly converging to a policy that takes
on average approximately 50 time steps to navigate the car from the valley. The Maximum Density
Separation method lags slightly behind the other two methods, which indicates that this problem
can be easily learned without complicated abstract state repartitioning. Analysis of Table 4 gives
an additional explanation for the performance of MDS. The MDS method consistently finds that
there are only roughly three groups of observations in the space and so only partitions the space into
three tiles. It might have taken additional generations to effectively learn the correct placement
of these partitions, compared with the larger number of states used by the mutation and fixed
methods. Even though the other methods need to learn correct values over more states, there are
still relatively few states to learn so they quickly converge. These results do serve to show that
automatic repartitioning of the abstract state space does not cause too much degradation to the
overall convergence of the learner even when fixed tilings can work well. The overall convergence
of the learner on simple reinforcement learning problems even when the problem is simple enough
that a fixed abstraction is sufficient.

Table 4 contains the number of abstract states available to the fixed and mutation methods
during their best run, as well as the number of states that was determined by the MDS method.
We can see that the MDS method on average uses 3 or 4 abstract states with a standard deviation
of 1.25, meaning that it was very consistent in the number of states used to learn the problem. The
other two methods preferred many more partitions. However, the number of those partitions where
observations were placed by the ANNs in the RL-SANE procedure was much smaller. The fixed
method used roughly 19.08 £+ 9.08 (averagetstd) out of the 50 available states, while the Mutation
method used 30.40 4 22.67 from 90 possible starting states. From this we can see that it is not only
the number of tiles that is important, but the effect they have on where the tiles get placed across
the abstract state space. Since each of these two methods uses fixed-width partitioning, the number
of abstract states will cause the boundaries to fall in different locations, and over-partitioning the
space can allow the learner to use more appropriately positioned tiles. This is in contrast to the
MDS approach which allows the boundaries to be placed anywhere in the abstract state and does
not need to add additional empty states solely to adjust the layout of the useful ones.

The disparity in the number of used states between three methods is interesting. T'wo possible
explanations regarding why the fixed and mutation methods had a large number of states are that
the large number of initial states induced the learner and ANN to prefer many small groups of
observations throughout the one dimensional state space, or that many adjacent states shared the
same optimal action preference. In the latter case, these adjacent states could have been merged

Approved for Public Release; Distribution Unlimited.
28



Mountain Car
Performance
200

150
0 MDS eeeereeen
% Mutation
b Fixed
REST0
]
=
=
5O L S s
0 L L L L )
0 10 20 30 40 50

Generations

Figure 7: The performance of MDS, mutation and the fixed abstraction methods on the mountain
car. The curves for the mutation and fixed methods are the results from the best initial parameter
settings.

together resulting in possibly far fewer states, though there is no means to do this in these methods.

Double Pole Balance Figure 8 shows the average number of time steps the pole was balanced
for each of the three methods; the solid lines for the mutation and fixed methods are the best scores
achieved by any initial parameter setting (10 for both methods). The more time steps, the better
the algorithm has learned the problem. The dashed curves show the average performance for the
two methods across all tested initial state boundaries. The MDS has no initial parameter selection
and so only has the single dotted line in the figure. We can see that MDS and the best settings of the
other methods show similar trends, with the score of the two adaptive methods just edging out the
best fixed method. Analysis of the average curves (dashed lines) gives more information about the
general performance of the mutation and fixed methods as compared to the MDS method. While
the MDS method has no choice of initial parameters and still ends up achieving an excellent overall
score, different numbers of initial abstract states causes a varied performance in the other two
methods. The mutation method is relatively robust with regard to the initial parameter selection
as compared to the performance degradation seen by the fixed method if a bad initial abstraction
is selected.

Figure 9 explores this phenomenon more completely by showing the performance of the fixed
and mutation methods for all 10 initial parameter settings. The individual parameter results are
shown in faint gray lines except for the best and worst performers which are solid black lines. The
vertical bars span the space between the best and worst performer and highlight the sensitivity of
the fixed method. Generally, the smaller parameters perform better than the larger initial values,
and the vertical bars show that the fluctuation of performance is much smaller in the mutation
method than the fixed method. The reason why the double pole balance problem is much more
sensitive to the initial number of abstract states as compared to the mountain car problem has
to do with the number of actively used states. In the mountain car problem, even if many states
were available only a fraction of those were used. This is in contrast to the double pole balance
problem where nearly all of the available states are used. The mutation method allows the number
of available states to quickly be reduced down to a number that the learning algorithm can deal
with, and thus improve the rate of convergence compared to the fixed method.
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Figure 8: Learning performance evaluation. For comparison, the mutation and fixed methods
include their single best initial parameter setting as well as their average performance across all
parameter values.

All three abstraction methods prefer to use a similar number of abstract states for the double
pole balance problem, as indicated by Table 4. The best fixed tiling began with 10 tiles and used
all 10 consistently throughout the learning process. The mutation method also achieved its best
performance after starting with 10 tiles, however the number of tiles used decreased to 7.56 + 3.88
by generation 200. The MDS method was also in agreement with the other approaches and by
generation 200 was using 13.5 £ 5.93 tiles. Despite the complexity of the problem, many of the
states in the ground state space can be successfully aggregated together, as evidenced by the small
number of states being used.

4.4 Pertaining to Incremental Feature Selection

We analyze the performance of our IFSE-NEAT algorithm from two perspectives: (i) the quality of
the derived policy, and (ii) the ability of the algorithm to select relevant features. We measure the
quality of the derived policy by a problem-specific fitness function. The composition of the selected
subset in terms of the fraction of relevant features among selected ones quantifies an algorithm’s
ability to select a good feature subset. Finally, we verify that the performance of our algorithm
(measured by the above metrics) does not degrade as the number of irrelevant features increases.

We compare IFSE-NEAT to the baseline NEAT as well as FS-NEAT, a competing feature
selection algorithm we describe in Section 4.4.1. All three algorithms are evaluated in a challeng-
ing race track domain that is capable of providing many relevant and irrelevant features for the
algorithms to work with. The details of this environment as well as the specific parameters used
by the algorithms are given in Section 4.4.2.

4.4.1 FS-NEAT

Feature Selective NEAT, or FS-NEAT, is an embedded feature selection algorithm within the
NEAT framework [20]. One limiting assumption standard NEAT makes, discussed in Section 3.4.2,
is that all input features are relevant and are fully incorporated into all solution networks. FS-
NEAT assumes that few features are actually relevant. Networks are initialized with only a single
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Figure 9: The effect of different numbers of initial abstract states for both the Fixed and Mutation
methods on the Double Pole Balance problem. The dashed line is the average of all values; vertical
bars show distance between maximum and minimum performance.

Table 5: Different problems used in the RARS experiments broken down by the number of relevant,
irrelevant, and total number of features.

Relevant | Irrelevant | Total
) 5 10
5 25 30
5 45 50
5 95 100

connection between a randomly selected pair of input and output nodes. Through subsequent
mutations other input nodes may add a connection to the rest of the network and hence be selected
into the model.

4.4.2 The RARS Domain

We conducted our experimental analysis using version 0.91_2 of the Robot Auto Racing Simulator
(RARS)3. RARS provides a detailed physical simulation of a racetrack and vehicles and allows
users to define their own artificial agents to control the racers.

The goal of the simulation is to learn a path around the track that covers the most distance
in a limited time while minimizing damage received by the car. Damage is calculated by RARS
based on the amount of time the car spends off the track. The racers are controlled by supplying
a desired speed and direction at every time step in the simulation.

We implemented a rangefinder system in the simulation to provide vehicle position information
to the learning algorithm as in Figure 10. In our experiments we placed N range sensors evenly
around the front of the car as in [20], starting from the left side of the car and finishing at the right
to provide a full view of the track. The range finders, together with the velocity of the car, are
used by the learner to provide two continuous control outputs, corresponding to the desired speed
and direction of the car.

*http://rars.sourceforge.net/
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Figure 10: Providing vehicle location information via a rangefinder system.

To make the RARS environment challenging from a feature selection point of view we added
irrelevant features to the set. Irrelevant features simply return a random value in [-1,1]. We devel-
oped several challenging problems with different combinations of relevant and irrelevant features
as shown in Table 5. These combinations allow us to examine the robustness of each of the three
algorithms in comparison w.r.t. increasing numbers of irrelevant features.

All three algorithms tested are neuroevolutionary algorithms that require a fitness function to
provide the feedback that guides learning. We adopt the fitness function used by [20], S = 2d —r,
where d is the distance the car has traveled from the start and r is the amount of damage received.
Trials end after the learner either has observed 2000 time steps or the car registers too much
damage.

All experiments took place on the clkwis.trk track that is bundled in the RARS package, shown
in Figure 11. This track was selected because it exhibits several driving scenarios such as straight-
aways, turns and an S-curve. The experiments were conducted in the RARS environment according
to the following setup.

e Three algorithms were tested, NEAT, FS-NEAT, and IFSE-NEAT

For each tested combination of features 10 runs were conducted with each algorithm, results
presented are the average of these 10 runs.

Each run lasted 200 generations

IFSE-NEAT split the 200 generations into five L(-) periods with L(1) =3, L(2) =7,L(3) =
20, L(4) = 50, L(5) = 120

The NEAT population size was set to 100

We set the number of generations allowed to 200 since the algorithms appeared to converge by that
point and there was no need to carry the experiment further. The particular values of the L(-)
function are not important, and we experimented with other values which yielded similar results.

All three algorithms in comparison rely on NEAT for generation of the neural networks to allow
learning. In our experiments we make use of Another NEAT Java Implementation (ANJI) for the
NEAT algorithm 4. We followed the settings given in [20] of 0.10 and 0.02 for add-connection
and add-neuron respectively to set the parameters for the FS-NEAT algorithm. For NEAT, and
IFSE-NEAT we set the add-connection mutation probability to 0.02 and the add-neuron mutation
to 0.01. In our experiments we found the parameters used with FS-NEAT to be too aggressive for
NEAT and IFSE-NEAT.

“Source code available at http://anji.sourceforge.net
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Figure 11: A top-down view of the clkwis track used in the experiments.

4.4.3 Results and Discussion

Figure 12a shows the results of running the three algorithms for the problem with 5 relevant features
and 45 irrelevant features as the algorithms search for the optimal policy. Fitness of the derived
policies is measured in terms of the value of the fitness function defined in Section 4.4.2. We can
see that IFSE-NEAT converges to the best fitness of the three algorithms, and this convergence
occurs at around generation 50. Both NEAT and FS-NEAT exhibit a slower rate of convergence
than TFSE-NEAT. In this situation, NEAT is limited by the need to assign correct weights to many
features. Since all available features are used in the NEAT neural network, NEAT has to evolve
through many generations to find the right weights for links associated with the relevant features
while keeping weights for irrelevant features low in order to limit their impact on the network
output. The FS-NEAT algorithm suffers from its random search policy. Since there are many
irrelevant features in the problem, they have a higher chance of being included in the network than
a relevant feature does, causing the algorithm to be slow to learn an effective policy.

In Figure 12b we see the composition of the selected subsets by the three algorithms. IFSE-
NEAT clearly has the highest percentage of relevant features per selected group, at around 90% on
average. This number begins at 100% for 1 selected feature and slowly decreases as features are
added to the set. Figure 12a shows that IFSE-NEAT achieves optimal fitness early, and then even
relevant features do not appear helpful, causing some irrelevant features to be incorrectly selected
in some of the 10 runs of the algorithm. FS-NEAT slowly adds new features to the set, many of
which are irrelevant, causing low scores in both measures. It should be noted that IFSE-NEAT
and FS-NEAT select around 5 features by the 200" generation in all tested settings.

We now further study how the three algorithms scale with an increasing number of irrelevant
features. Figure 13b shows the fraction of relevant features among the selected ones by each
algorithm. We can see that for each of the problems, IFSE-NEAT selects on average at least four
relevant features in five feature selection steps. This validates our feature ranking and selection
criteria, and supports the consistently good fitness values seen in Figure 13a. As predicted, NEAT’s
fitness degrades as the number of irrelevant features increases and the fraction of relevant features
decreases. It always includes all the irrelevant features, which increases the complexity of the
networks and slows down learning. FS-NEAT’s fitness shows a variable trend caused by the random
selection mechanism. Despite starting with more irrelevant features in the problem with 50 features,
the fitness of the final policy actually improved over the problems with 10 and 25 features, as shown
in Figure 13a. This is most likely the result of the network weights being randomly improved by
chance and more trials should remove this effect.
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Figure 12: Two performance metrics: fitness (a) and the fraction of relevant features among the
selected ones (b), for NEAT, FS-NEAT, and IFSE-NEAT across 200 generations on the problem
with 5 relevant features and 45 irrelevant features.
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Figure 13: Two performance metrics: fitness (a) and the fraction of relevant features among the
selected ones (b), for NEAT, FS-NEAT, and IFSE-NEAT at the 200th generation across 4 prob-
lems with 5 relevant features and 5, 25, 45, and 95 irrelevant features.

4.5 Pertaining to Sample Aware Feature Selection

This empirical study demonstrates the ability of SAFS-NEAT to scale up RL in high-dimensional
environments. Section 4.5.1 details the two domains used in this work, and gives parameter settings
for the algorithms in comparison. Results from these domains are provided in Section 4.5.2, along
with a discussion of our main findings.

4.5.1 Experimental Setup

Robot Auto Racing Simulator One experimental domain is the Robot Auto Racing Simulator®
(RARS) racing simulation environment. The goal of this problem is to drive a car around a track
as quickly as possible, while keeping the car on the track. Each state of the environment is defined
by a set of position sensors and the car’s speed. The sensors evenly span the 180° area in front
of the car as depicted in Figure 14(a), and measure the distance from the car to the nearest track

®Source code available at: http://rars.sourceforge.net

Approved for Public Release; Distribution Unlimited.
34



(b)

Figure 14: (a) The range finder sensors measuring the car’s position relative to the nearest track
walls. (b) Overhead view of Fiorano, the track used in this study.

wall along that direction. The set of position sensors and velocity are considered relevant features.
In each state, the learner must use these features to determine correct values for two continuous
actions, the next desired vehicle speed and direction. Several tracks were experimented with, all
results reported here were gathered using Fiorano, a track included in the RARS distribution and
depicted in Figure 14(b).

To make the problem more challenging, we introduce irrelevant and redundant features to the
environment. Irrelevant features, which may come from sensors for perceptional inputs irrelevant
to driving (e.g., radio tuner frequency), are Gaussian random variables with mean 0.5 and standard
deviation 0.25. All sensors must report values within the range [0, 1], and any random value that
falls out of this range gets clipped to the nearest boundary. Redundant sensors are simply made by
adding more range finders to the car, forcing them to be spaced closely together so that neighbors
return similar information. Our study investigates the effects of increasing numbers of irrelevant
sensors in {0, 10, 20, 40, 80} while keeping the number of relevant features fixed at 10.
Similarly, different numbers of relevant features {10, 20, 30, 50, 90} are used to create redundant
feature scenarios, while keeping the number of irrelevant features set to 0.

The neuroevolutionary algorithms in our experiments require a fitness function to measure the
quality of NNs in the population. In the case of RARS, we allow a policy to be executed for up
to 3000 time steps in the environment, or until the car crashed, whichever came first. The fitness
of a policy is f(m) = 2d — p, where d is the distance the car has traveled, and p is the internally
calculated damage penalty incurred by leaving the track.

Algorithm Parameter Settings Three evolutionary algorithms: NEAT, FS-NEAT, and SAFS-
NEAT are studied. All algorithm implementations are based on the ANJI® code base developed
for the NEAT algorithm. All share a number of parameter settings that control evolution. The
population size p was set to 100 in all experiments. The top 20% of the population was propa-
gated unchanged into the next population. Population members are eligible to reproduce if their
compatibility scores are greater than 0.5. The compatibility score from [11] was used with weight
coefficients: excess = 1.0, disjoint = 1.0, and matching = 0.04. Activation functions on the input
neurons are linear, while all other activation functions are sigmoid. Since evolution is a stochastic

5Source code available at: http://anji.sourceforge.net
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Figure 15: (a) Fitness at each generation during policy learning for NEAT, FS-NEAT, and IFSE-
NEAT with 10 irrelevant features. (b) Shows the fitness of each algorithm at generation 200 as
irrelevant features increase from 0 to 80. Error bars denote the standard deviation of the 25 runs
at each point.

process, all experiments were run 25 times, each with a different random seed, and all reported
results are averages across these runs.

For RARS, perceptron networks were found to produce successful policies, so add-neuron-
mutation was turned off. The add-connection-mutation was off for NEAT and SAFS-NEAT, while
0.01 was found to be a good value for FS-NEAT. For DPB add-connection was set to 0.02 and
add-neuron to 0.01 for all algorithms. Evolution was permitted for 200 generations in RARS, and
300 in DPB, to allow more complex networks to evolve. For each run of DPB, 25 instantiations of
the cart-pole system were used to promote the learning of a general policy. The starting positions
and velocities varied across these 25 runs. SAFS-NEAT used a window size of w = 5 generations,
and set € = 0.0005.

4.5.2 Results and Discussion

Robot Auto Racing Simulator Figure 15 (a) compares the convergence rate of the three
algorithms with 10 relevant and 10 irrelevant sensors. As a reference, it also shows the performance
of NEAT with 10 relevant sensors and no irrelevant sensors. The negative performance impact of
learning in the presence of irrelevant features is made clear by the difference in fitness between
NEAT with zero irrelevant features, and NEAT with 10 irrelevant features. SAFS-NEAT is able
to incrementally build a feature subset containing predominantly relevant features, enabling it to
approach the performance of the reference curve; a performance that looks qualitatively good.
FS-NEAT reaches an average performance that settles between the other two algorithms, scaling
better than NEAT but worse than SAFS-NEAT. The standard deviation bars on the plot also
show an interesting trend with respect to the feature selection algorithms. For FS-NEAT these
error bars remain relatively large throughout learning. This is due to the random inclusion of
irrelevant features in many selected subsets, which reduces the performance of the algorithm on
average. Unlike FS-NEAT, SAFS-NEAT starts with large deviations, as different relevant features
are selected early in learning, but these deviations shrink over time. This is due to the different runs
converging on a similar set of relevant features, which in turn produce consistently fit networks.
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As the number of irrelevant sensors increases from 0 to 80, similar trends noticed in plot (a) can
be observed in plot (b) of Figure 15. For any number of irrelevant features tested, SAFS-NEAT
consistently achieves a final performance value similar to the reference plot of NEAT with no ir-
relevant features. This shows that the feature selection mechanism employed by SAFS-NEAT can
successfully select relevant features in high-dimensional environments. In contrast with this behav-
ior, NEAT gets significantly worse as more irrelevant features are added to the problem because
the evolutionary search has trouble making many good mutations simultaneously to improve the
NNs. Only one or a few prosperous mutations may not be enough to drive the fitness of a NN
high enough to guarantee its inclusion in the subsequent generation. Failure to survive to the next
generation will cause these good mutations to die out from the population, preventing NEAT from
progressing towards an optimal policy. The performance of FS-NEAT lies between SAFS-NEAT
and NEAT for all settings of the irrelevant feature scaling experiments. It is able to scale better
than NEAT by virtue of incorporating fewer features into its networks, requiring fewer simultaneous
successful mutations to cause fitness improvement. It also clearly shows a sensitivity to the number
of irrelevant features included in the problem, and attains increasingly lower fitness values as more
irrelevant features are present in the problem. This is due to the high probability of randomly
selecting an irrelevant feature into the network, forcing later generations to evolve around these
errant features. SAFS-NEAT’s sample-based feature selection strategy removes this dependency on
the number of irrelevant features as they are all ranked low and hence not selected into the feature
subset, regardless of their prevalence in the environment.

In these experiments there is a strong relationship between the aggregate number of samples
observed by an agent, an evolutionary generation, and the fitness of the population. Specifically,
the aggregate samples seen by an algorithm is given by 23201 ]1-0:01 eval(N N;j), where eval(-) is a
function that returns the number of samples observed while evaluating a network in the environ-
ment. Since each evaluation is restricted to 3000 time steps in this domain, there is a hard bound
on the number of samples which can be seen overall, and in each generation. The actual number of
samples used in any one generation can significantly vary below this bound, and is correlated with
fitness of each member of the population. Low fitness generally costs few samples since the car
crashes after very few time steps, while obtaining a high fitness score requires the use of all 3000
allotted time steps. Fitness differences between algorithms at any generation do not arise from an
unfair advantage in number of samples available, but rather how effectively the evolution made use
of all samples up to that generation.

Figure 16 gives empirical evidence to support this reasoning by presenting the total number
of samples seen by each learning algorithm during the entire span of evolution. This plot follows
the aggregate number of observed samples for each algorithm as the number of irrelevant features
scales from 0 to 80, while holding the number of relevant features fixed at 10. We can see that
both feature selection algorithms tend to interact with the environment a similar number of times
across all settings. This number of interactions also corresponds with the results of the NEAT
algorithm when no irrelevant features are present, meaning that performing feature selection does
not introduce an additional burden on interacting with the environment. From Figure 15 we see
that SAFS-NEAT evolves much more fit networks than FS-NEAT, especially as more irrelevant
features are present in the environment. From this we can conclude that the feature relevance
measure used by SAFS-NEAT makes more effective use of samples than evolutionary search of
FS-NEAT when irrelevant features are present. Note that the decreasing trend of samples observed
by NEAT naturally relates to the fitness performance of the algorithm. Less fit policies cannot
observe comparatively many samples because they crash prior to using all 3000 time steps.

Figure 17 shows the size and quality of the selected feature subsets for the two feature selection
algorithms, SAFS-NEAT and FS-NEAT, on Fiorano. Baseline NEAT is not shown because it
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Figure 16: Average number of samples observed during 200 generations for each of the three
algorithms on Fiorano as the number of irrelevant features increases from 0 to 80. FKError bars
denote the standard deviation of the 25 runs at each point.

always includes all features available in the environment. In Figure 17 the effects of increasing
the number of irrelevant sensors in the environment can be seen. SAFS-NEAT tends to select
around 9 features in total (open bars), since a good policy can usually be learned on a single track
without all 10 relevant features. Out of these features, SAFS-NEAT selects only relevant features
(solid bars) nearly all of the time. This is in sharp contrast to FS-NEAT, which selects increasing
numbers of irrelevant features as it struggles to include relevant features. It ultimately selects
around 5 relevant features on average, and the relevant fraction of the selected subset is very low
when many irrelevant features are present in the environment. This contributes to the reduced
learning performance seen in Figure 15(b).

Due to space limitations, results on the redundant scaling experiments are not reported in
this work, however, we would like to note some general trends from their outcome. SAFS-NEAT
continued to perform near the reference curve in all scenarios, and FS-NEAT performed similarly
well. NEAT did suffer slightly as many features were included due to the size of the networks,
but not nearly as much as in the irrelevant scaling experiments. FS-NEAT was able to perform
similarly well as SAFS-NEAT because with only relevant features to choose from, adding a feature
would not tend to harm the policy much, allowing FS-NEAT to find and maintain a high-fitness
policy.

Double Inverted Pendulum Balancing Figure 18 shows the average fitness performance of the
three algorithms as the number of irrelevant features increases in the double inverted pendulum
balance (DPB) environment. Fitness indicates the number of time steps that both pendulums
remained balanced on the cart, with 100,000 being the maximum possible in our setup. Similar to
the above results, the performance of NEAT on the scenario with no irrelevant features is shown as
a reference. We see in Figure 18(a) that 6 irrelevant features causes a large performance decrease for
NEAT, and that NEAT makes nearly no progress towards m* when there are at least 12 irrelevant
features in the environment. FS-NEAT is better able to cope with irrelevant features, and achieves
around 90% of the maximum fitness value when 6 or 12 irrelevant features are present as evidenced
in Figure 18(b). Its performance drops off sharply when 24 or 48 irrelevant features are in the
environment. On the other hand, SAFS-NEAT is able to learn a near optimal policy in all four
scenarios, and even slightly outperforms the reference curve on all settings.

This at first may seem counter-intuitive, but after examining the results of SAFS-NEAT we
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Figure 18: (a) Fitness at each generation during policy learning for NEAT, FS-NEAT, and SAFS-
NEAT with 6 irrelevant features. (b) Shows the fitness of each algorithm at generation 300 as
irrelevant features increase from 0 to 48.

observed that many NNs connected the inputs to only specific output nodes. NEAT networks
always begin fully connected, and so have a larger number of connections which may be mutated,
increasing the policy search space and reducing the chances of evolving 7* in the duration of the
experiment. Unlike the RARS environment, SAFS-NEAT shows very little improvement in the
starting generations on the double pendulum balance. Due to feature interactions in this domain,
several features must first be included in the subset before learning progress can be made, as
evidenced by the flat fitness curve for approximately 20 generations. Once an appropriate feature
set is determined, SAFS-NEAT rapidly achieves a near optimal fitness. Standard deviation error
bars are not shown for improved clarity of these plots. FS-NEAT in this environment magnifies its
large standard deviation trend observed in the RARS problem, obscuring the results. SAFS-NEAT
and NEAT both have small deviations in this problem after around 100 generations as all runs of
these algorithms begin to converge to their final fitness values.

Space limitations prevent us from including sample usage results for DPB, but overall trends
observed from the RARS domain are repeated for DPB. Feature selection does not increase the
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sample requirements of the NEAT algorithm, and given the difference in performance, SAFS-NEAT
can be said to make more efficient use of the samples than FS-NEAT. SAFS-NEAT is also able
to select a near purely relevant feature subset throughout the different scenarios, selecting around
5 features on average. FS-NEAT again includes many irrelevant features in the high-dimensional
settings, causing evolution to be unable to find an effective policy in those scenarios.

The results presented in Sections 4.5.2 & 4.5.2 have served to illustrate several key points:
(i) irrelevant features can prohibit the learning of a good policy; (ii) the existence of redundant
information can sometimes degrade policy learning without feature selection; (iii) SAFS-NEAT
is able to effectively eliminate irrelevant and many redundant features, leading to good selected
feature subsets and fit policies; (iv) SAFS-NEAT is more effective than FS-NEAT, especially for
an environment with many irrelevant features but few relevant features. From these points we can
conclude that SAFS-NEAT is a sample efficient feature selection algorithm for RL that improves
the scalability of the NEAT algorithm.

5 CONCLUSIONS

In this effort, we have developed approaches for performing machine learning in complex environ-
ments that fall within two major areas: state abstraction and feature selection techniques. Both
areas show promise for future work and have applicability to real-world Air Force problems with
high complexity.

Specifically, we’ve detailed the following:

An embedded feature selection algorithm which incorporates a sequential forward search into
the neuroevolutionary function approximation method NEAT for reinforcement learning. Our re-
sults demonstrate the effectiveness of IFSE-NEAT at identifying relevant features and eliminating
irrelevant ones. This ability enables IFSE-NEAT to converge upon higher quality policies using sim-
pler networks in fewer generations than either NEAT or FS-NEAT. However, although IFSE-NEAT
more efficient than wrapper methods, the incremental search for relevant features adds significant
computational cost when compared to the other NEAT variants. Possible future directions include
investigating the parallelization of the algorithm to help mitigate this cost, and further study on
the generalization ability of the simple NN solutions found by [FSE-NEAT.

We have presented the Maximum Distance Separation algorithm which seeks to automatically
partition a state space based on dense regions of observations. This method has been shown to
improve the learning rate as compared to using a fixed abstraction or naively altering the number
of states during evolution on a challenging reinforcement learning problem, and they allow the
learner to consider only a small number of states while doing so. This work yields itself to several
promising future directions. As illustrated by the mountain car results, intelligent aggregation is
not always beneficial. Identifying these problems during the abstraction generation procedure could
be one future area of interest. There is no need to limit MDS to the one dimensional state space
used by RL-SANE, and applying this method to the ground state space or in combination with a
different dimensionality reduction technique may prove useful. In general, the interplay between
state abstraction and dimensionality reduction could be an interesting avenue of future research.

We have presented three types of automatic state abstraction techniques, mutation methods that
make use of ANNs to abstract the space, Maximum Distance Separation which seeks to partition a
space based on dense regions of observations, and Temporal Relative Extrema which builds abstract
states by separating observations that lead to previously seen areas of the state space. Each of these
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methods has been shown to improve the learning rate as compared to using a fixed abstraction, and
they make use of only a small number of states while doing so. One future direction of this work is
to experiment with the techniques on higher dimensional state spaces, instead of restricting them
to the one dimensional abstract space at work in the RL-SANE algorithm. Another interesting
possibility is to relax the current abstraction conceptualization and not require that a partition of
the space be determined; instead only focus on those areas that need increased resolution.

In this work, we have proposed a novel feature selection algorithm for RL with continuous
action spaces, SAFS-NEAT, that automatically and efficiently discovers a good set of features for
learning a generalized policy. To achieve this, it embeds a sequential forward search procedure
into the NEAT policy search algorithm, and applies an efficient method to evaluate the goodness
of features via previously collected samples. We have demonstrated its ability to handle high-
dimensional state spaces in two challenging problems, where it outperformed a feature selection
algorithm that did not exploit sample knowledge. There are several directions for possible future
work. One is to investigate filter feature selection algorithms that could be used in place of mutual
information. Another would be to investigate feature selection approaches embedded into other
learning algorithms. We believe that further investigating the usage of samples in feature selection
can lead to more efficient learning algorithms which are better able to scale to real-world high-
dimensional RL problems.

EvoTC and CMAC were able to solve both benchmark problems it does not appear that either
method will scale adequately as the number of features that describe the state space is increased.
Both methods are tile coding based and are linear abstractions of the state space. As a result,
although the abstract state spaces found by these methods are significantly smaller than the actual
state space, they will still scale proportionally as the number of features is increased. It may be the
case that non-linear state abstraction methods such as RL-SANE [10] are necessary as the number
of features are increased. Real world applications have large continuous state spaces that prevent
the use of RL algorithms. State abstraction methods such as tile coding are necessary in order to
apply RL to non-trivial problems. Fixed tile coding algorithms such as CMAC can be effective as
long as the tiling scheme is properly designed. Adaptive tile coding methods like ATC and EvoTC
are appealing because they do not require manual design of the state abstraction. In this paper
we introduced EvoTC and showed how it is able to abstract the state space more effectively than
CMAC and ATC on two continuous state space problems. Not only was EvoTC able to outperform
CMAC and ATC in terms of abstraction power it was able to reduce the classical mountain car
domain to a problem consisting of just two states. This result highlights the power and importance
of automated state abstraction methods. Although EvoTC was able to very effectively abstract
the state space of the mountain car problem it does not appear that the approach will scale well
as the number of features that describe the domain are increased. We believe this is due to the
linear nature of the tiling abstraction. Although the tilings are gross abstractions of the state space
the dimensionality of the abstract state space is the same as the original state space. In future
work we will explore the derivation of non-linear state abstraction devices such as multi-layered
feed forward neural networks [10] and examine how they scale. Non-linear state abstractions may
be able to find more efficient abstractions of mutli-dimensional state spaces enabling them to scale
more effectively as the number of features is increased.
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ANJI Another NEAT Java Implementation
ANN Artificial Neural Network

ATC Adaptive Tile Coding

CMAC Cerebellar Model Articulation Controller
DPB Double Pole Balance

EvoTC Evolutionary Tile Coding

FS-NEAT Feature Selective NEAT
IFSE-NEAT  Incremental Feature Selection Embedded in NEAT

MDP Markov Decision Process

MDS Maximum Density Separation

NEAT NeuroEvolution of Augmenting Topologies

NN Neural Network

RARS Robot Auto Racing Simulator

RL Reinforcement Learning

RL-SANE Reinforcement Learning using State Abstraction via NeuroEvolution
SAFS-NEAT Sample Aware Feature Selection embedded in NEAT
SARSA State Action Reward State Action

SFS Sequential Feature Selection

TRE Temporal Relative Extrema
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